

#### CS 540 Introduction to Artificial Intelligence Unsupervised Learning II

University of Wisconsin-Madison Fall 2023

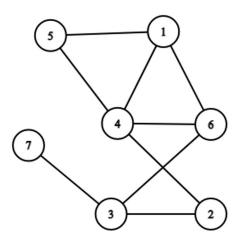
#### Unsupervised Learning II Outline

- Finish up Other Clustering Types
  - Graph-based clustering, graph cuts, spectral clustering
- Unsupervised Learning: Visualization
  - t-SNE: algorithm, examples, vs. PCA
- Unsupervised Learning: Density Estimation
  - Kernel density estimation: high-level intro

## Other Types of Clustering

Graph-based/proximity-based

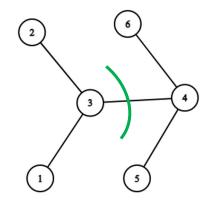
- Recall: Graph G = (V,E) has vertex set V, edge set E.
  - Edges can be weighted or unweighted
  - Edges encode **similarity** between vertices:  $w_{ij} = sim(v_i, v_j)$
- Don't need to KEEP vectors for each v.
  - Only keep the edges (possibly weighted)



#### **Graph-Based Clustering**

**Want:** partition V into V<sub>1</sub> and V<sub>2</sub>

- Implies a graph "cut"
- One idea: minimize the **weight** of the cut

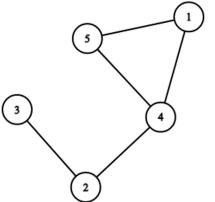


$$W(A,B) = \sum_{i\in A,j\in B} w_{ij}$$
 $\operatorname{cut}(A_1,\ldots,A_k) := rac{1}{2}\sum_{i=1}^k W(A_i,\overline{A}_i).$ 

#### **Graph-Based Clustering**

#### How do we compute these?

- Hard problem  $\rightarrow$  heuristics
  - Greedy algorithm
  - "Spectral" approaches
- Spectral clustering approach: - Adjacency matrix  $A_{ij} = w_{ij}$  A =

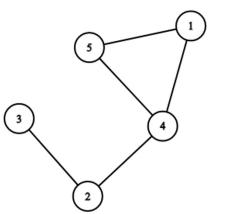


$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Spectral clustering approach:

– Adjacency matrix

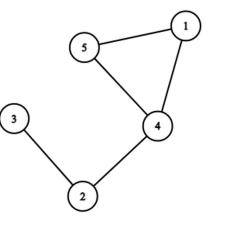
- Degree matrix 
$$D_{ii} = \sum_{j=1}^{n} A_{ij}$$



$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

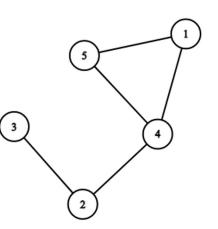
Spectral clustering approach:

 1. Compute Laplacian L = D – A
 (Important tool in graph theory)



$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
Degree Matrix
Adjacency Matrix
Laplacian

- Spectral clustering approach:
  - 1. Compute Laplacian L = D A
  - 1a (optional): compute normalized Laplacian:  $L = I - D^{-1/2}AD^{-1/2}$ , or  $L = I - D^{-1}A$

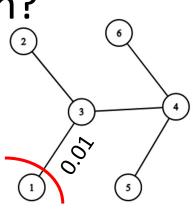


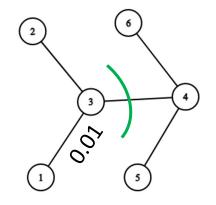
- 2. Compute *j* smallest eigenvectors of L
- 3. Set U to be the  $n \ge j$  matrix with  $u_1, ..., u_j$  as columns. Take the n rows formed as points.
- 4. Run k-means on the representations.

## Why normalized Laplacian?

Want: partition V into V<sub>1</sub> and V<sub>2</sub>

- Implies a graph "cut"
- One idea: minimize the weight of the cut
  - Downside: might only get cut of one node
  - Need: "balanced" cut





#### Why Normalized Laplacian?

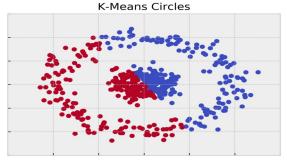
**Want:** partition V into  $V_1$  and  $V_2$ 

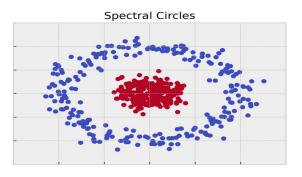
- Just minimizing weight is not always a good idea.
- We want **balance!**

$$\operatorname{Ncut}(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

$$\mathrm{vol}(A) = \sum_{i \in A} \mathrm{degree}(i)$$

- **Q**: Why do this?
  - 1. graph induces an "effective resistance distance", similar to shortest path distance but also considers how many paths there are
  - 2. Can handle intuitive separation (Euclidean dist can't!)





Credit: William

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_{2.}$ 

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S<sub>1</sub> and S<sub>2</sub>
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S<sub>2</sub>
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub>

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_{2.}$ 

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S<sub>1</sub> and S<sub>2</sub>
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S<sub>2</sub>
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub>

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_{2.}$ 

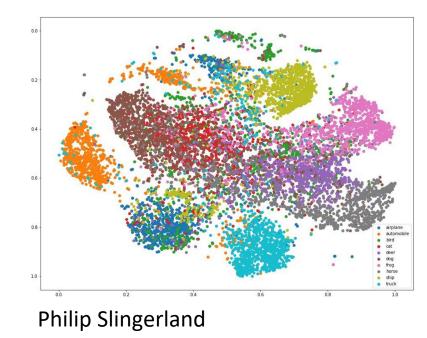
What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S<sub>1</sub> and S<sub>2</sub> (No: can't do k-means on graph)
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S (Same as A)
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub> (No: S<sub>2</sub> is not a graph)

#### Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA.
- Note: PCA can be used for visualization, but not specifically designed for it.
- Some algorithms are **specifically** for visualization.



#### **Dimensionality Reduction & Visualization**

#### Typical dataset: MNIST

- Handwritten digits 0-9
  - 60,000 images (small by ML standards)
  - 28×28 pixel (784 dimensions)
  - Standard for image experiments
- Dimensionality reduction?
  - Reducing dimensionality to 2-3 dimensions allows people to visualize data points and their relationships.

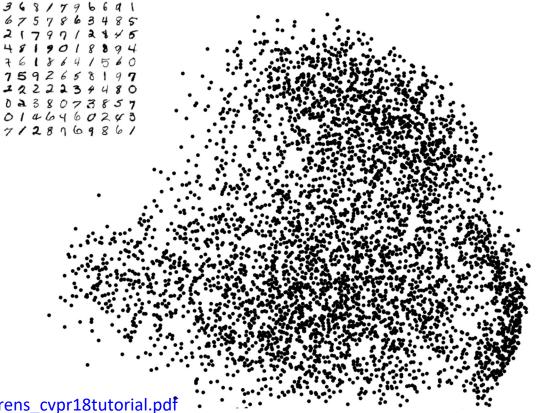
00000000000000000  $\backslash \langle / / / / / / /$ 2222222222222222 3**33**333333333333333 448444444444444 66666666666666666 77777 77777 7 8 888 888888 8 8 8 ŋ ٩ 9

#### **Dimensionality Reduction & Visualization**

Run PCA on MNIST

 PCA is a linear mapping, (can be restrictive)

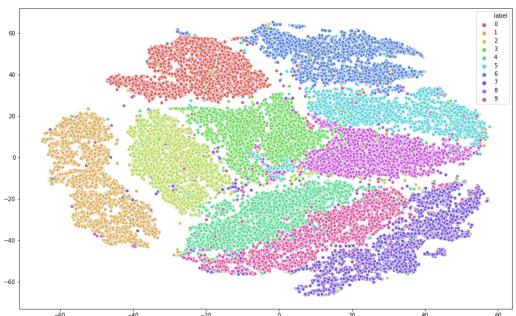
Image source: http://deeplearning.csail.mit.edu/slide\_cvpr2018/laurens\_cvpr18tutorial.pdf



#### Visualization: T-SNE

Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- **Input**: x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>



#### **T-SNE** Algorithm: Step 1

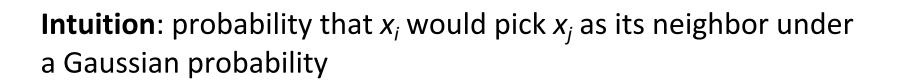
X4

X<sub>3</sub>

**X**<sub>1</sub>

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors



#### **T-SNE** Examples

- Examples: (from Laurens van der Maaten)
- Movies:

https://lvdmaaten.github.io/tsne/examples/netflix\_tsne.jpg



#### **T-SNE** Examples

- Examples: (from Laurens van der Maaten)
- NORB:

https://lvdmaaten.github.io/tsne/examples/norb\_tsne.jpg

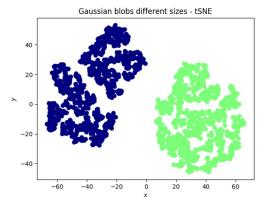


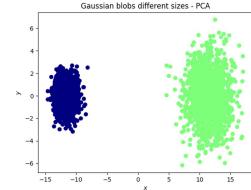
#### Visualization: T-SNE

#### t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
   not a bad thing necessarily
- Downstream use

Good resource/credit: https://www.thekerneltrip.com/statistics/tsne-vs-pca/





**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them

**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them

**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)

#### Short Intro to Density Estimation

Goal: given samples  $x_1, ..., x_n$  from some distribution P, estimate P.

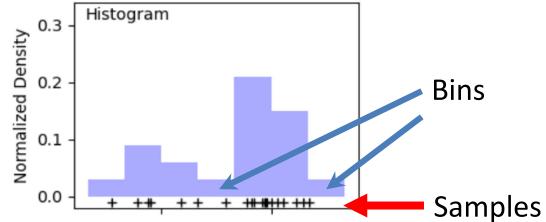
- Compute statistics (mean, variance)
- Generate samples from P
- Run inference



Zach Monge

#### Simplest Idea: Histograms

# Goal: given samples $x_1$ , ..., $x_n$ from some distribution P, estimate P.



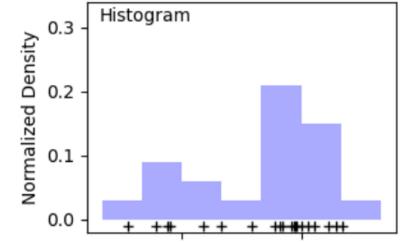
Define bins; count # of samples in each bin, normalize

#### Simplest Idea: Histograms

Goal: given samples  $x_1, ..., x_n$  from some distribution P, estimate P.

#### **Downsides:**

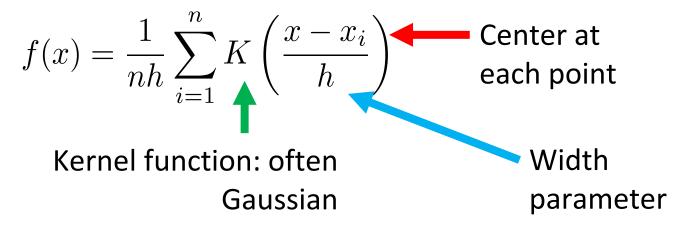
- i) High-dimensions: most bins are empty.
- ii) Not continuous.
- iii) How to choose bins?



#### **Kernel Density Estimation**

Goal: given samples  $x_1, ..., x_n$  from some distribution P, estimate P.

Idea: represent density as combination of "kernels"



#### **Kernel Density Estimation**

Idea: represent density as combination of kernels

• "Smooth" out the histogram

