Instance-Based Learning

CS 760@UW-Madison
you should understand the following concepts

- k-NN classification
- k-NN regression
- edited nearest neighbor
- k-d trees for nearest neighbor identification (optional)
- inductive bias (hypothesis space bias, preference bias)
Nearest-neighbor classification

learning stage
• given a training set \((x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})\), do nothing (it’s sometimes called a lazy learner)

classification stage
• **given**: an instance \(x^{(q)}\) to classify
• find the training-set instance \(x^{(i)}\) that is most similar to \(x^{(q)}\)
• return the class value \(y^{(i)}\)
The decision regions

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance
k-nearest-neighbor classification

classification task

- **given**: an instance $x^{(q)}$ to classify
- find the k training-set instances $(x^{(1)}, y^{(1)}), \ldots, (x^{(k)}, y^{(k)})$ that are most similar to $x^{(q)}$
- return the class value

\[
\hat{y} \leftarrow \arg\max_{v \in \text{values}(Y)} \sum_{i=1}^k \delta(v, y^{(i)}) \quad \delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise} \end{cases}
\]

(i.e. return the class that have the most instances)
How can we determine distance

suppose all features are discrete
 • Hamming distance: count the number of features for which two instances differ

suppose all features are continuous
 • Euclidean distance:

\[
d(x^{(i)}, x^{(j)}) = \sqrt{\sum_{f} (x_f^{(i)} - x_f^{(j)})^2}
\]

 where \(x_f^{(i)} \) represents the \(f \)-th feature of \(x^{(i)} \)

 • Manhattan distance:

\[
d(x^{(i)}, x^{(j)}) = \sum_{f} |x_f^{(i)} - x_f^{(j)}|
\]
How can we determine distance

• if we have a mix of discrete/continuous features:

\[
d(x^{(i)}, x^{(j)}) = \sum_f \begin{cases}
 |x_f^{(i)} - x_f^{(j)}| & \text{if } f \text{ is continuous} \\
 1 - \delta(x_f^{(i)}, x_f^{(j)}) & \text{if } f \text{ is discrete}
\end{cases}
\]

• typically want to apply to continuous features some type of normalization (values range 0 to 1) or standardization (values distributed according to standard normal)

• many other possible distance functions we could use …
Standardizing numeric features

- given the training set D, determine the mean and stddev for feature x_i

 \[
 \mu_i = \frac{1}{|D|} \sum_{d=1}^{D} x_i^{(d)} \quad \sigma_i = \sqrt{\frac{1}{|D|} \sum_{d=1}^{D} (x_i^{(d)} - \mu_i)^2}
 \]

- standardize each value of feature x_i as follows

 \[
 \hat{x}_i^{(d)} = \frac{x_i^{(d)} - \mu_i}{\sigma_i}
 \]

- do the same for test instances, using the same μ_i and σ_i derived from the training data
Variants
k-nearest-neighbor regression

learning stage
- given a training set $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$, do nothing

prediction stage
- **given**: an instance $x^{(q)}$ to make a prediction for
- find the k training-set instances $(x^{(1)}, y^{(1)}), \ldots, (x^{(k)}, y^{(k)})$ that are most similar to $x^{(q)}$
- return the value

\[
\hat{y} \leftarrow \frac{1}{k} \sum_{i=1}^{k} y^{(i)}
\]
Distance-weighted nearest neighbor

We can have instances contribute to a prediction according to their distance from $x^{(q)}$

classification:

$$\hat{y} \leftarrow \operatorname{argmax}_{v \in \text{values}(Y)} \sum_{i=1}^{k} w_i \delta(v, y^{(i)})$$

$$w_i = \frac{1}{d(x^{(q)}, x^{(i)})^2}$$

regression:

$$\hat{y} \leftarrow \frac{\sum_{i=1}^{k} w_i y^{(i)}}{\sum_{i=1}^{k} w_i}$$
here's a case in which there is one relevant feature x_1 and a 1-NN rule classifies each instance correctly.

Consider the effect of an irrelevant feature x_2 on distances and nearest neighbors.
Speeding up k-NN

- k-NN is a “lazy” learning algorithm – does virtually nothing at training time
- but classification/prediction time can be costly when the training set is large

- two general strategies for alleviating this weakness
 - don’t retain every training instance (edited nearest neighbor)
 - use a smart data structure to look up nearest neighbors (e.g. a k-d tree)
Edited instance-based learning

• select a subset of the instances that still provide accurate classifications

• *incremental deletion*

 start with all training instances in memory
 for each training instance \((x^{(i)}, y^{(i)})\)

 if other training instances provide correct classification for \((x^{(i)}, y^{(i)})\)

 delete it from the memory

• *incremental growth*

 start with an empty memory
 for each training instance \((x^{(i)}, y^{(i)})\)

 if other training instances in memory don’t correctly classify \((x^{(i)}, y^{(i)})\)

 add it to the memory
k-d Tree: Data Structure for Finding Nearest Neighbors
k-d trees

A k-d tree is similar to a decision tree except that each internal node:
- stores one instance
- splits on the median value of the feature having the highest variance

```
x_1 > 6
f
x_2 > 10
c
x_2 > 4
e
x_2 > 11
a
x_2 > 8
d
x_1 > 9
g
x_1 > 3
b
x_1 > 10
i
x_2 > 11.5
j
x_2 > 10
h
```
Finding nearest neighbors with a k-d tree

• use branch-and-bound search

• priority queue stores
 • nodes considered
 • lower bound on their distance to query instance

• lower bound given by distance using a single feature

• average case: \(O(\log_2 m) \)

• worst case: \(O(m) \) where \(m \) is the size of the training-set
Finding nearest neighbors in a k-d tree

NearestNeighbor(instance $x^{(q)}$)

PQ = { } // minimizing priority queue
best_dist = ∞ // smallest distance seen so far
PQ.push(root, 0)
while PQ is not empty
 (node, bound) = PQ.pop();
 if (bound \geq best_dist)
 return best_node.instance // nearest neighbor found
 dist = distance($x^{(q)}$, node.instance)
 if (dist $<$ best_dist)
 best_dist = dist
 best_node = node
 if ($q[node.feature] - node.threshold > 0$)
 PQ.push(node.left, $x^{(q)}[node.feature] - node.threshold$)
 PQ.push(node.right, 0)
 else
 PQ.push(node.left, 0)
 PQ.push(node.right, node.threshold - $x^{(q)}[node.feature]$)
return best_node.instance
k-d tree example (Manhattan distance)

given query
\(x^{(q)} = (2, 3) \)
k-d tree example (Manhattan distance)

Given query: \(x^{(q)} = (2, 3) \)

Priority Queue

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td></td>
<td></td>
<td>((f, 0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
k-d tree example (Manhattan distance)

given query $x^{(q)} = (2, 3)$

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td>∞</td>
<td>(f, 0)</td>
<td>(f, 0)</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>

pop f
k-d tree example (Manhattan distance)

given query \(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td>f</td>
<td>(f, 0)</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>f</td>
<td>(c, 0)</td>
</tr>
</tbody>
</table>

pop f
k-d tree example (Manhattan distance)

given query
\(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td></td>
<td>(f, 0)</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>f</td>
<td>(c, 0) (h, 4)</td>
</tr>
</tbody>
</table>

pop f
k-d tree example (Manhattan distance)

given query
\(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(f)</td>
<td>((f, 0))</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>(f)</td>
<td>((c, 0)) ((h, 4))</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0</td>
<td>(f)</td>
<td></td>
</tr>
</tbody>
</table>
k-d tree example (Manhattan distance)

given query
\(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td></td>
<td>(f, 0)</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>f</td>
<td>(c, 0) (h, 4)</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0</td>
<td>f</td>
<td>(e, 0) (h, 4) (b, 7)</td>
</tr>
</tbody>
</table>

pop f

pop c
k-d tree example (Manhattan distance)

given query
\(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(4.0)</td>
<td>(f)</td>
<td>((f, 0))</td>
</tr>
<tr>
<td>(4.0)</td>
<td>(4.0)</td>
<td>(f)</td>
<td>((c, 0)), ((h, 4))</td>
</tr>
<tr>
<td>(10.0)</td>
<td>(4.0)</td>
<td>(f)</td>
<td>((e, 0)), ((h, 4)), ((b, 7))</td>
</tr>
<tr>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(e)</td>
<td></td>
</tr>
</tbody>
</table>
k-d tree example (Manhattan distance)

Given query \(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td></td>
<td>((f, 0))</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>f</td>
<td>((c, 0) \ (h, 4))</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0</td>
<td>f</td>
<td>((e, 0) \ (h, 4) \ (b, 7))</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>e</td>
<td>((d, 1) \ (h, 4) \ (b, 7))</td>
</tr>
</tbody>
</table>
k-d tree example (Manhattan distance)

given query
\(x^{(q)} = (2, 3) \)

<table>
<thead>
<tr>
<th>distance</th>
<th>best distance</th>
<th>best node</th>
<th>priority queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(f)</td>
<td>(f, 0)</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>(f)</td>
<td>(c, 0) (h, 4)</td>
</tr>
<tr>
<td>10.0</td>
<td>4.0</td>
<td>(f)</td>
<td>(e, 0) (h, 4) (b, 7)</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>(e)</td>
<td>(d, 1) (h, 4) (b, 7)</td>
</tr>
</tbody>
</table>

pop f
pop c
pop e
pop d
return e
Strength and Limitations
Strengths of instance-based learning

• simple to implement
• "training" is very efficient
• adapts well to on-line learning
• robust to noisy training data (when $k > 1$)
• often works well in practice
Limitations of instance-based learning

• sensitive to range of feature values

• sensitive to irrelevant and correlated features, although …
 • there are variants (such as locally weighted regression) that learn weights for different features
 • later we’ll talk about feature selection methods

• classification/prediction can be inefficient, although edited methods and k-d trees can help alleviate this weakness

• doesn’t provide much insight into problem domain because there is no explicit model
Inductive bias

- *inductive bias* is the set of assumptions a learner uses to be able to predict y_i for a previously unseen instance x_i
- two components
 - *hypothesis space bias*: determines the models that can be represented
 - *preference bias*: specifies a preference ordering within the space of models

- in order to *generalize* (i.e. make predictions for previously unseen instances) a learning algorithm must have an inductive bias
Consider the inductive bias of DT and \(k \)-NN learners

<table>
<thead>
<tr>
<th>learner</th>
<th>hypothesis space bias</th>
<th>preference bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID3 decision tree</td>
<td>trees with single-feature, axis-parallel splits</td>
<td>small trees identified by greedy search</td>
</tr>
<tr>
<td>(k \text{-NN})</td>
<td>Voronoi decomposition determined by nearest neighbors</td>
<td>instances in neighborhood belong to same class</td>
</tr>
</tbody>
</table>
THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yingyu Liang, Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.