


Goals for the lecture

« understand the concepts
 generative/discriminative models
» examples of the two approaches
* MLE (Maximum Likelihood Estimation)
* Naive Bayes
« Naive Bayes assumption
« model 1: Bernoulli Naive Bayes
* model 2: Multinomial Naive Bayes
* model 3: Gaussian Naive Bayes
* model 4: Multiclass Naive Bayes



Review: supervised learning

problem setting
- set of possible instances: X
« unknown target function (concept): fi:X—=Y
- set of hypotheses (hypothesis class): H={hlh:X =Y}

given
» training set of instances of unknown target function f

(Xa), y(”), (X<2>, y(2>) (x(’”), y(’”))

output
« hypothesis /i € H that best approximates target function



Parametric hypothesis class @

« hypothesis /& € H is indexed by (fixed dimensional) parameter @ € ®
* learning: find the @ such that 4, € /' best approximate the target
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« different from nonparametric approaches like decision trees and nearest
neighbor

» advantages: various hypothesis class; easier to use math/optimization



Discriminative approaches

 hypothesis s € H directly predicts the label y given the features x
y = h(x) or more generally, p(y|x)=h(x)

- then define a loss function L(/) and find hypothesis with min. loss
» A special case is a probabilistic model, finding MLE or MAP

« example: linear regression

hy,(x) = <x, <9>

Lhy) =~ 3 (x) = )



Generative approaches @

 hypothesis /1 € H specifies a generative probabilistic story for how the
full data (x,y) was created

h(x,y)=p(x,y)

* then pick a hypothesis by maximum likelihood estimation (MLE) or
Maximum A Posteriori (MAP)

« example: roll a weighted die
« weights for each side (@) define how the data are generated
» use MLE on the training data to learn @



Comments on discriminative/generative @

« Orthogonal to the parametric / nonparametric divide
* nonparametric Bayesian: a large subfield of ML

» when discriminative/generative is likely to be better? Discussed in later
lecture

* typical discriminative: linear regression, logistic regression, SVM, many
neural networks (not all!), ...

* typical generative: Naive Bayes, Bayesian Networks, ...
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MLE vs. MAP

Suppose we have data D = {z(V1N

Maximum Likelihood
Estimate (MLE)

N
Ot = argmax | [ p x(9)|@
= 1;[1 (x\16)



Background: MLE

Example: MLE of Exponential Distribution

pdf of Exponential(\): f(z) = Ae™

Suppose X; ~ Exponential(\) for1 <¢ < N.
Find MLE for data D = {z(V} ¥V,

First write down log-likelihood of sample.
Compute first derivative, set to zero, solve for .
Compute second derivative and check that it is
concave down at AME,



Background: MLE

Example: MLE of Exponential Distribution

e First write down log-likelihood of sample.

() = Zlog f(z¥)

= Z log( X exp(—Az())

i=1

N .
Z log(\) + =z
i=1

N
= Nlog(A\) — A Z ()
i=1

(2)

(3)

(4)



Background: MLE

Example: MLE of Exponential Distribution

e Compute first derivative, set to zero, solve for \.

() d Sl
d(A) = —~Nlog(}) — Az (1)
1=1
N
N .
:X—Zx@):o (2)
1=1
— )\MLE N

(3)



MLE vs. MAP

Suppose we have data D = {z(V1N

Maximum Likelihood
Estimate (MLE)

N
OME — argmax | | p(x(? |6
= 1;[1 (x\"16)

o

Prior
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Model 0: Not-so-naive Model? @

Generative Story:
1. Flip a weighted coin (Y)

2. If heads, roll the many sided die to sample a document
vector (X) from the Spam distribution

3. If tails, roll the blue many sided die to sample a document
vector (X) from the Not-Spam distribution

P(X17°°°7XK7Y) :P(XlaaXKD/)P(Y)

This model is
computationally naive!




Model 0: Not-so-naive Model?

Generative Story:
1. Flip a weighted coin (Y)

2. If heads, sample a document ID (X) from the Spam
distribution

3. If tails, sample a document ID (X) from the Not-Spam
distribution

P(X,Y) = P(X|Y)P(Y)

This model is
computationally naive!




Model 0: Not-so-naive Model?

Flip weighted coin

If HEADS, roll If TAILS, roll
yellow die blue die
y X7 X2 X3 ... Xg
0 110 | 1 1
1 o|1]o0 1
1 111 | 1 1
0 oo |1 1
0 110 | 1 0
1 110 | 1 0

17




Nalve Bayes Assumption

Conditional independence of features:

P(X17°°°7XK7Y) :P(leaXK‘Y)P(Y)

- (H P(Xm) P(Y)

k=1



- Estimating a joint from conditional @
o probabilities

P(A,BIC)=P(AIC)*P(BIC)

n. VYa,bc:P(A=anB=blC=c)=P(A=alC=¢c)*P(B=blC =c)

1 0.67
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Assuming conditional independence, the conditional
probabilities encode the same information as the joint
table.

They are very convenient for estimating
P(X,ye.. , X [Y)=P( X |Y)*... *P( X |Y)

They are almost as good for computing

P(X,...X, |Y)P(Y)
P(X,,..X )

PYIX,,..X, )=

P(X, .. X =x|PY =
vxﬁy:P(Y:lelﬂu-)Xn :X): ( 1, n X| ) ( y)

P(X,,..X =X)



Generic Naive Bayes Model

Support: Depends on the choice of event model, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y)=P(Y) ][ P(Xx|Y)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X;|Y) we condition on the data with the corresponding

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



Generic Naive Bayes Model

Classification:

y = argmax p(y|x) (posterior)

 rema PP )

y p()

= argmax p(x|y)p(y)
Yy

(by Bayes’ rule)




Various Naive
Models

N
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Model 1: Bernoulli Nalve Bayes

Support: Binary vectors of length K
x € {0,1}*

Generative Story:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(f,y) Vk € {1,..., K}

Model: p¢’9($7 y) = p¢,9($1, - UK y)

) H po,. (zk|y)

= (¢)Y(1 — ¢)~ y)H (Or.y) 1_9ky)(1 Th)



Model 1: Bernoulli Naive Bayes @

Flip weighted coin

If HEADS, flip each If TAILS, flip
yellow coin each blue coin
Y X X2 X3 XK
Q@QQ o||1]o0]1 1 “..
1 o|l1]o0 1
1 101 |1 1
0 o| 0|1 1
0 1 10| 1 0
1 1101 0




Model 1: Bernoulli Nalve Bayes

Support: Binary vectors of length K
x € {0,1}*
Generative Story:

Y ~ Bernoulli(¢)
X ~ Bernoulli(f y) Vk € {1,... KL

Same as Generic

1

Model: p¢’9($7y) _ (¢)y(1 . (b)(l_y) ! | Naive Ba!yes

Classification: Find the class that maximizes the posterior

y = argmax p(y|x)
Y



Generic Naive Bayes Model

Classification:

y = argmax p(y|x) (posterior)

 rema PP )

y p()

= argmax p(x|y)p(y)
Yy

(by Bayes’ rule)




Model 1: Bernoulli Nalve Bayes

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each
P(X;|Y) we condition on the data with the corresponding

class. ;
by L Iy =1)
N
o Zim Ly =0na) =1)
| Zivzl I(y) = 0)
g — Xim 1y =1na) =1)

Zfl\il I(y® = 1)
Vke{l,...,K}



Model 2: Multinomial Naive Bayes )

Support: Integer vector (word IDs)

X = |r1,%2,...,Tp | Wherex,,, € {1,..., K} awordid.

Generative Story:
fori e {1,...,N}:

y" ~ Bernoulli(¢)
forj e {1,...,M;}: (Assume M; = M forall i)

azg-z) ~ Multinomial(0 ), 1)

Model:

Pg.0(T,Y) Hpek (k|y)

= (¢)¥(1 — ¢)*~¥) H Oy .
j=1



Model 3: Gaussian Naive Bayes

Support: = RK

Model: Product of prior and the event model

p(wvy) :p(xl,...,xK,y)

Gaussian Naive Bayes assumes that p(x|y) is given by
a Normal distribution.



Model 4: Multiclass Nalve Bayes

Model:

The only change is that we permit y to range over C
classes.

p(may) :p(ilfl,...,Q?K,y)

k
Now, y ~ Multinomial(¢,
rate conditional distributio
classes.

) and we have a sepa-
(x|y) for each of the C

)
S



THANK YOU

Some of the slides in these lectures have been adapted/b.orrowed
from materials developed by Yingyu Liang, Mark Crawen, David

@I’) Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley,
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Elad Hazan” Tom Dietterich, and Pedro Domingos.
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