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Goals for the lecture
• understand the concepts

• generative/discriminative models
• examples of the two approaches
• MLE (Maximum Likelihood Estimation)
• Naïve Bayes

• Naïve Bayes assumption
• model 1: Bernoulli Naïve Bayes
• model 2: Multinomial Naïve Bayes
• model 3: Gaussian Naïve Bayes
• model 4: Multiclass Naïve Bayes



Review: supervised learning

problem setting
• set of possible instances:
• unknown target function (concept): 
• set of hypotheses (hypothesis class):

given
• training set of instances of unknown target function f

X

€ 

f : X →Y

€ 

H = h | h : X →Y{ }

output
• hypothesis  that best approximates target functionHhÎ
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Parametric hypothesis class
• hypothesis              is indexed by (fixed dimensional) parameter
• learning:  find the     such that              best approximate the target

• different from nonparametric approaches like decision trees and nearest 
neighbor

• advantages: various hypothesis class; easier to use math/optimization
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Discriminative approaches
• hypothesis            directly predicts the label y given the features x

• then define a loss function           and find hypothesis with min. loss
• A special case is a probabilistic model, finding MLE or MAP 

• example: linear regression
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Generative approaches
• hypothesis            specifies a generative probabilistic story for how the 

full data (x,y) was created

• then pick a hypothesis by maximum likelihood estimation (MLE) or 
Maximum A Posteriori (MAP)

• example: roll a weighted die
• weights for each side (   ) define how the data are generated
• use MLE on the training data to learn 
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Comments on discriminative/generative

• Orthogonal to the parametric / nonparametric divide
• nonparametric Bayesian: a large subfield of ML

• when discriminative/generative is likely to be better? Discussed in later 
lecture 

• typical discriminative: linear regression, logistic regression, SVM, many 
neural networks (not all!), …

• typical generative: Naïve Bayes, Bayesian Networks, …



MLE and MAP



MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood 
Estimate (MLE)



Background: MLE

Example: MLE of Exponential Distribution
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• pdf of Exponential(�): f(x) = �e��x

• Suppose Xi � Exponential(�) for 1 � i � N .
• Find MLE for data D = {x(i)}N

i=1

• First write down log-likelihood of sample.
• Compute first derivative, set to zero, solve for �.
• Compute second derivative and check that it is

concave down at �MLE.



Background: MLE

Example: MLE of Exponential Distribution
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• First write down log-likelihood of sample.

�(�) =
N�

i=1

HQ; f(x(i)) (1)

=
N�

i=1

HQ;(� 2tT(��x(i))) (2)

=
N�

i=1

HQ;(�) + ��x(i) (3)

= N HQ;(�) � �
N�

i=1

x(i) (4)



Background: MLE

Example: MLE of Exponential Distribution
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• Compute first derivative, set to zero, solve for �.

d�(�)

d�
=

d

d�
N HQ;(�) � �

N�

i=1

x(i) (1)

=
N

�
�

N�

i=1

x(i) = 0 (2)

� �MLE =
N

�N
i=1 x(i)

(3)



MLE vs. MAP
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Prior

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood 
Estimate (MLE)

Maximum a posteriori
(MAP) estimate



Naïve Bayes



Model 0: Not-so-naïve Model?

Generative Story:
1. Flip a weighted coin (Y)
2. If heads, roll the yellow many sided die to sample a document 

vector (X) from the Spam distribution
3. If tails, roll the blue many sided die to sample a document 

vector (X) from the Not-Spam distribution

15

This model is 
computationally naïve!

P (X1, . . . , XK , Y ) = P (X1, . . . , XK |Y )P (Y )



Model 0: Not-so-naïve Model?

Generative Story:
1. Flip a weighted coin (Y)
2. If heads, sample a document ID (X) from the Spam 

distribution
3. If tails, sample a document ID (X) from the Not-Spam 

distribution

16

This model is 
computationally naïve!

P (X, Y ) = P (X|Y )P (Y )



Model 0: Not-so-naïve Model?
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If HEADS, roll 
yellow die

Flip weighted coin

If TAILS, roll 
blue die

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Each side of the die 
is labeled with a 

document vector 
(e.g. [1,0,1,…,1])



Naïve Bayes Assumption

Conditional independence of features:
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P (X1, . . . , XK , Y ) = P (X1, . . . , XK |Y )P (Y )

=

�
K�

k=1

P (Xk|Y )

�
P (Y )



Estimating a joint from conditional 
probabilities

A C P(A|C)

0 0 0.2

0 1 0.5

1 0 0.8

1 1 0.5

B C P(B|C)

0 0 0.1

0 1 0.9

1 0 0.9

1 1 0.1

A B C P(A,B,C)

0 0 0 …

0 0 1 …

0 1 0 …

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

P(A,B |C) = P(A |C)*P(B |C)
∀a,bc :P(A = a∧B = b |C = c) = P(A = a |C = c)*P(B = b |C = c)

C P(C)

0 0.33

1 0.67



C P(C)

0 0.33

1 0.67

Estimating a joint from conditional 
probabilities

A B D C P(A,B,D,C)

0 0 0 0 …

0 0 1 0 …

0 1 0 0 …

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

0 0 0 1

0 0 1 0

… … .. … …

A C P(A|C)

0 0 0.2

0 1 0.5

1 0 0.8

1 1 0.5B C P(B|C)

0 0 0.1

0 1 0.9

1 0 0.9

1 1 0.1

D C P(D|C)

0 0 0.1

0 1 0.1

1 0 0.9

1 1 0.1



P(Y |X1,...,Xn ) =
P(X1,...,Xn |Y )P(Y )

P(X1,...,Xn )
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Assuming conditional independence, the conditional 
probabilities encode the same information as the joint 
table.

They are very convenient for estimating 
P( X1,…,Xn|Y)=P( X1|Y)*…*P( Xn|Y)

They are almost as good for computing



Model: Product of prior and the event model

Generic Naïve Bayes Model

22

P (s, Y ) = P (Y )
K�

k=1

P (Xk|Y )

Support: Depends on the choice of event model, P(Xk|Y)

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 
P(Xk|Y)we condition on the data with the corresponding 
class.Classification: Find the class that maximizes the posterior

ŷ = �`;K�t
y

p(y|t)



Generic Naïve Bayes Model
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Classification:

ŷ = �`;K�t
y

p(y|t) (posterior)

= �`;K�t
y

p(t|y)p(y)

p(x)
(by Bayes’ rule)

= �`;K�t
y

p(t|y)p(y)



Various Naïve Bayes 
Models



Model 1: Bernoulli Naïve Bayes
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Support: Binary vectors of length K
t � {0, 1}K

Generative Story:

Y � Bernoulli(�)

Xk � Bernoulli(�k,Y ) �k � {1, . . . , K}

Model: p�,�(x, y) = p�,�(x1, . . . , xK , y)

= p�(y)
K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
K�

k=1

(�k,y)xk(1 � �k,y)(1�xk)



Model 1: Bernoulli Naïve Bayes
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If HEADS, flip each 
yellow coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xk

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



Model 1: Bernoulli Naïve Bayes
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Support: Binary vectors of length K
t � {0, 1}K

Generative Story:

Y � Bernoulli(�)

Xk � Bernoulli(�k,Y ) �k � {1, . . . , K}

Model: p�,�(x, y) = p�,�(x1, . . . , xK , y)

= p�(y)
K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
K�

k=1

(�k,y)xk(1 � �k,y)(1�xk)

Classification: Find the class that maximizes the posterior
ŷ = �`;K�t

y
p(y|t)

p�,�(x, y) = p�,�(x1, . . . , xK , y)

= p�(y)
K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
K�

k=1

(�k,y)xk(1 � �k,y)(1�xk)

Same as Generic 
Naïve Bayes



Generic Naïve Bayes Model
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Classification:

ŷ = �`;K�t
y

p(y|t) (posterior)

= �`;K�t
y

p(t|y)p(y)

p(x)
(by Bayes’ rule)

= �`;K�t
y

p(t|y)p(y)



Model 1: Bernoulli Naïve Bayes
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Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each 
P(Xk|Y)we condition on the data with the corresponding 
class.

� =

�N
i=1 I(y(i) = 1)

N

�k,0 =

�N
i=1 I(y(i) = 0 � x(i)

k = 1)
�N

i=1 I(y(i) = 0)

�k,1 =

�N
i=1 I(y(i) = 1 � x(i)

k = 1)
�N

i=1 I(y(i) = 1)

�k � {1, . . . , K}



Model 2: Multinomial Naïve Bayes
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Integer vector (word IDs)

t = [x1, x2, . . . , xM ] where xm � {1, . . . , K} a word id.

Support:

Generative Story:
for i � {1, . . . , N}:

y(i) � Bernoulli(�)

for j � {1, . . . , Mi}:

x(i)
j � Multinomial(�y(i) , 1)

Model:
p�,�(x, y) = p�(y)

K�

k=1

p�k(xk|y)

= (�)y(1 � �)(1�y)
Mi�

j=1

�y,xj

(Assume	𝑀* = 𝑀		for	all	𝑖)



Model 3: Gaussian Naïve Bayes
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Model: Product of prior and the event model

Support: 

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

t � RK

Gaussian Naive Bayes assumes that p(xk|y) is given by
a Normal distribution.



Model 4: Multiclass Naïve Bayes
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Model:

p(x, y) = p(x1, . . . , xK , y)

= p(y)
K�

k=1

p(xk|y)

Now, y � Multinomial(�, 1) and we have a sepa-
rate conditional distribution p(xk|y) for each of the C
classes.

The only change is that we permit y to range over C
classes.



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 
Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, 

Elad Hazan, Tom Dietterich, and Pedro Domingos. 


