## Naïve Bayes

CS 760@UW-Madison





## Goals for the lecture

- understand the concepts
  - generative/discriminative models
  - examples of the two approaches
  - MLE (Maximum Likelihood Estimation)
  - Naïve Bayes
    - Naïve Bayes assumption
    - model 1: Bernoulli Naïve Bayes
    - model 2: Multinomial Naïve Bayes
    - model 3: Gaussian Naïve Bayes
    - model 4: Multiclass Naïve Bayes





## **Review: supervised learning**

problem setting

- set of possible instances: X
- unknown *target function* (concept):  $f: X \rightarrow Y$
- set of *hypotheses* (hypothesis class):  $H = \{h \mid h : X \rightarrow Y\}$

given

• *training set* of instances of unknown target function f

 $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}) \dots (\mathbf{x}^{(m)}, y^{(m)})$ 

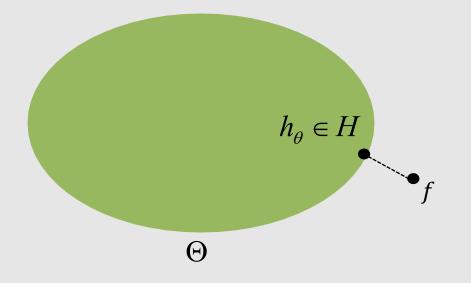
output

• hypothesis  $h \in H$  that best approximates target function

## Parametric hypothesis class



- hypothesis  $h \in H$  is indexed by (fixed dimensional) parameter  $\theta \in \Theta$
- learning: find the  $\theta$  such that  $h_{\theta} \in H$  best approximate the target



- different from nonparametric approaches like decision trees and nearest neighbor
- advantages: various hypothesis class; easier to use math/optimization

### **Discriminative approaches**



• hypothesis  $h \in H$  directly predicts the label y given the features x

y = h(x) or more generally, p(y | x) = h(x)

- then define a loss function L(h) and find hypothesis with min. loss
  - A special case is a probabilistic model, finding MLE or MAP
- example: linear regression

$$h_{\theta}(x) = \langle x, \theta \rangle$$
$$L(h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

### Generative approaches



 hypothesis h ∈ H specifies a generative probabilistic story for how the full data (x,y) was created

$$h(x, y) = p(x, y)$$

 then pick a hypothesis by maximum likelihood estimation (MLE) or Maximum A Posteriori (MAP)

- example: roll a weighted die
- weights for each side ( $\theta$ ) define how the data are generated
- use MLE on the training data to learn  $\theta$

#### Comments on discriminative/generative



- Orthogonal to the parametric / nonparametric divide
  - nonparametric Bayesian: a large subfield of ML
- when discriminative/generative is likely to be better? Discussed in later lecture
- typical discriminative: linear regression, logistic regression, SVM, many neural networks (not all!), ...
- typical generative: Naïve Bayes, Bayesian Networks, ...

# MLE and MAP



#### MLE vs. MAP



Suppose we have data 
$$\mathcal{D} = \{x^{(i)}\}_{i=1}^N$$

Maximum Likelihood Estimate (MLE)

$$\boldsymbol{\theta}^{\mathsf{MLE}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\theta})$$

#### Background: MLE



Example: MLE of Exponential Distribution

- pdf of Exponential( $\lambda$ ):  $f(x) = \lambda e^{-\lambda x}$
- Suppose  $X_i \sim \text{Exponential}(\lambda)$  for  $1 \leq i \leq N$ .
- Find MLE for data  $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$
- First write down log-likelihood of sample.
- Compute first derivative, set to zero, solve for  $\lambda$ .
- Compute second derivative and check that it is concave down at  $\lambda^{\rm MLE}.$

#### Background: MLE



Example: MLE of Exponential Distribution

 $\ell$ 

• First write down log-likelihood of sample.

$$\begin{aligned} &(\lambda) = \sum_{i=1}^{N} \log f(x^{(i)}) & (1) \\ &= \sum_{i=1}^{N} \log(\lambda \exp(-\lambda x^{(i)})) & (2) \\ &= \sum_{i=1}^{N} \log(\lambda) + -\lambda x^{(i)} & (3) \\ &= N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)} & (4) \end{aligned}$$

#### Background: MLE



Example: MLE of Exponential Distribution

d

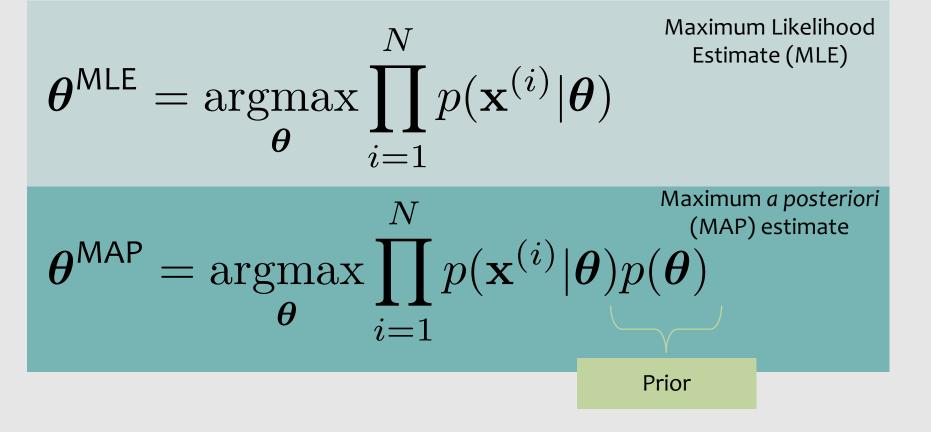
• Compute first derivative, set to zero, solve for  $\lambda$ .

$$\frac{\ell(\lambda)}{d\lambda} = \frac{d}{d\lambda} N \log(\lambda) - \lambda \sum_{i=1}^{N} x^{(i)} \qquad (1)$$
$$= \frac{N}{\lambda} - \sum_{i=1}^{N} x^{(i)} = 0 \qquad (2)$$
$$\Rightarrow \lambda^{\mathsf{MLE}} = \frac{N}{\sum_{i=1}^{N} x^{(i)}} \qquad (3)$$

#### MLE vs. MAP



Suppose we have data 
$$\mathcal{D} = \{x^{(i)}\}_{i=1}^N$$



# Naïve Bayes



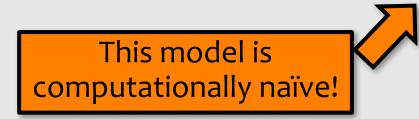
#### Model 0: Not-so-naïve Model?



#### **Generative Story**:

- 1. Flip a weighted coin (Y)
- 2. If heads, roll the yellow many sided die to sample a document vector (X) from the Spam distribution
- 3. If tails, roll the **blue** many sided die to sample a document vector (*X*) from the Not-Spam distribution

## $P(X_1,\ldots,X_K,Y)=P(X_1,\ldots,X_K|Y)P(Y)$



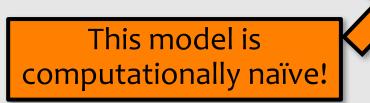
#### Model 0: Not-so-naïve Model?



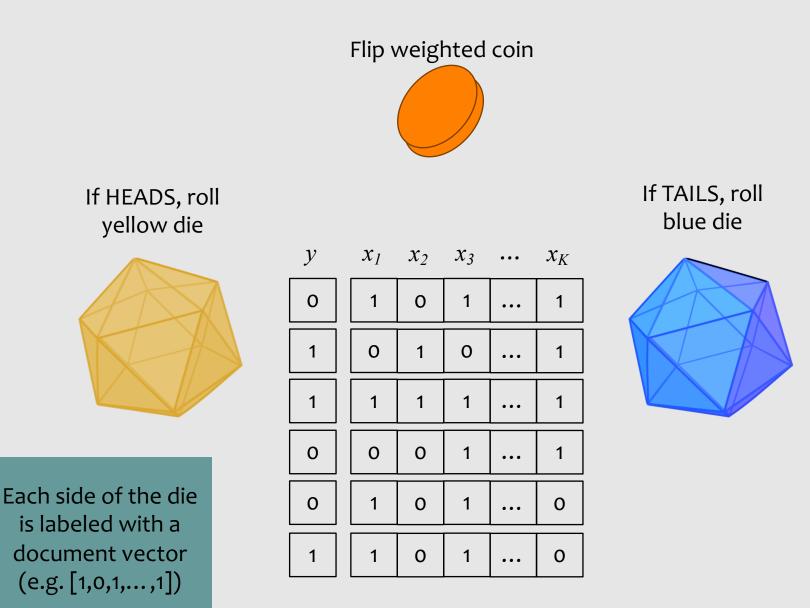
#### Generative Story:

- 1. Flip a weighted coin (Y)
- 2. If heads, sample a document ID (*X*) from the Spam distribution
- 3. If tails, sample a document ID (*X*) from the Not-Spam distribution

P(X,Y) = P(X|Y)P(Y)



#### Model 0: Not-so-naïve Model?



#### Naïve Bayes Assumption



Conditional independence of features:

$$P(X_1, \dots, X_K, Y) = P(X_1, \dots, X_K | Y) P(Y)$$
$$= \left(\prod_{k=1}^K P(X_k | Y)\right) P(Y)$$

| С | P(C) |
|---|------|
| 0 | 0.33 |
| 1 | 0.67 |

## Estimating a joint from conditional probabilities

P(A, B | C) = P(A | C) \* P(B | C)\(\forall a, bc : P(A = a \wedge B = b | C = c) = P(A = a | C = c) \* P(B = b | C = c)

| Α | С | P(A C) |  |
|---|---|--------|--|
| 0 | 0 | 0.2    |  |
| 0 | 1 | 0.5    |  |
| 1 | 0 | 0.8    |  |
| 1 | 1 | 0.5    |  |

| В | С | P(B C) |
|---|---|--------|
| 0 | 0 | 0.1    |
| 0 | 1 | 0.9    |
| 1 | 0 | 0.9    |
| 1 | 1 | 0.1    |

| А | В | C | P(A,B,C) |
|---|---|---|----------|
| 0 | 0 | 0 |          |
| 0 | 0 | 1 |          |
| 0 | 1 | 0 |          |
| 0 | 1 | 1 |          |
| 1 | 0 | 0 |          |
| 1 | 0 | 1 |          |
| 1 | 1 | 0 |          |
| 1 | 1 | 1 |          |

| С | P(C) |       |     | E  |
|---|------|-------|-----|----|
| 0 | 0.33 |       |     | pr |
| 1 | 0.67 |       |     | P  |
| Α | С    | P(A C | ;)  |    |
| 0 | 0    | 0.2   |     |    |
| 0 | 1    | 0.5   |     |    |
| 1 | 0    | 0.8   |     |    |
| 1 | В    | С     | P(B | C) |
|   | 0    | 0     | 0.1 |    |
|   | 0    | 1     | 0.9 |    |
|   | 1    | 0     | 0.9 |    |
|   | 1    | 1     | 0.1 |    |

| D | С | P(D C) |
|---|---|--------|
| 0 | 0 | 0.1    |
| 0 | 1 | 0.1    |
| 1 | 0 | 0.9    |
| 1 | 1 | 0.1    |

| Α | В | D | С | P(A,B,D,C) |
|---|---|---|---|------------|
| 0 | 0 | 0 | 0 |            |
| 0 | 0 | 1 | 0 |            |
| 0 | 1 | 0 | 0 |            |
| 0 | 1 | 1 | 0 |            |
| 1 | 0 | 0 | 0 |            |
| 1 | 0 | 1 | 0 |            |
| 1 | 1 | 0 | 0 |            |
| 1 | 1 | 1 | 0 |            |
| 0 | 0 | 0 | 1 |            |
| 0 | 0 | 1 | 0 |            |
|   |   |   |   |            |

## stimating a joint from conditional robabilities



Assuming conditional independence, the conditional probabilities encode the **same information** as the joint table.

They are very convenient for estimating P( $X_1,...,X_n|Y$ )=P( $X_1|Y$ )\*...\*P( $X_n|Y$ )

They are almost as good for computing

$$P(Y \mid X_1, ..., X_n) = \frac{P(X_1, ..., X_n \mid Y) P(Y)}{P(X_1, ..., X_n)}$$

$$\forall \mathbf{x}, y : P(Y = y | X_1, ..., X_n = \mathbf{x}) = \frac{P(X_1, ..., X_n = \mathbf{x} | Y)P(Y = y)}{P(X_1, ..., X_n = \mathbf{x})}$$

#### Generic Naïve Bayes Model



**Support:** Depends on the choice of **event model**,  $P(X_k|Y)$ 

Model: Product of prior and the event model

$$P(\mathbf{X}, Y) = P(Y) \prod_{k=1}^{K} P(X_k | Y)$$

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using all the data. For each  $P(X_k|Y)$  we condition on the data with the corresponding **Classification:** Find the class that maximizes the posterior  $\hat{y} = \operatorname*{argmax}_y p(y|\mathbf{x})_y$ 

### Generic Naïve Bayes Model



#### **Classification:**

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(y|\mathbf{x}) \quad \text{(posterior)}$$

$$= \underset{y}{\operatorname{argmax}} \frac{p(\mathbf{x}|y)p(y)}{p(x)} \quad \text{(by Bayes' rule)}$$

$$= \underset{y}{\operatorname{argmax}} p(\mathbf{x}|y)p(y)$$

## Various Naïve Bayes Models



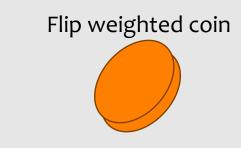
Support: Binary vectors of length K  $\mathbf{x} \in \{0, 1\}^K$ 

#### **Generative Story:**

 $Y \sim \text{Bernoulli}(\phi)$  $X_k \sim \text{Bernoulli}(\theta_{k,Y}) \ \forall k \in \{1, \dots, K\}$ 

Model: 
$$p_{\phi,\theta}(x,y) = p_{\phi,\theta}(x_1, \dots, x_K, y)$$
  
=  $p_{\phi}(y) \prod_{k=1}^{K} p_{\theta_k}(x_k | y)$   
=  $(\phi)^y (1-\phi)^{(1-y)} \prod_{k=1}^{K} (\theta_{k,y})^{x_k} (1-\theta_{k,y})^{(1-x_k)}$ 





## If HEADS, flip each yellow coin



Each red coin corresponds to an x<sub>k</sub>

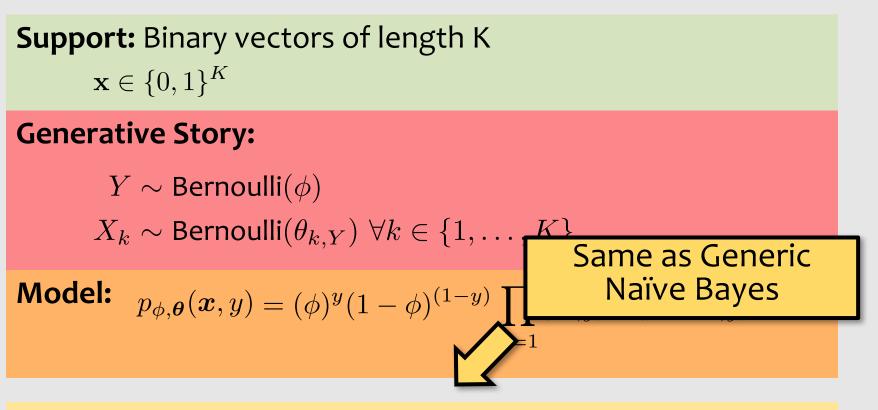
| У | $x_{l}$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | ••• | $x_K$ |
|---|---------|-----------------------|-----------------------|-----|-------|
| 0 | 1       | 0                     | 1                     | ••• | 1     |
| 1 | 0       | 1                     | 0                     | ••• | 1     |
| 1 | 1       | 1                     | 1                     | ••• | 1     |
| 0 | 0       | 0                     | 1                     | ••• | 1     |
| 0 | 1       | 0                     | 1                     |     | 0     |
| 1 | 1       | 0                     | 1                     | ••• | 0     |

If TAILS, flip each blue coin

We can **generate** data in this fashion. Though in practice we never would since our data is **given**.

Instead, this provides an explanation of **how** the data was generated (albeit a terrible one).





**Classification:** Find the class that maximizes the posterior  $\hat{y} = \operatorname{argmax} p(y|\mathbf{x})$ 

#### Generic Naïve Bayes Model

#### **Classification:**

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(y|\mathbf{x}) \quad \text{(posterior)}$$

$$= \underset{y}{\operatorname{argmax}} \frac{p(\mathbf{x}|y)p(y)}{p(x)} \quad \text{(by Bayes' rule)}$$

$$= \underset{y}{\operatorname{argmax}} p(\mathbf{x}|y)p(y)$$

Recall...



**Training:** Find the **class-conditional** MLE parameters

For P(Y), we find the MLE using all the data. For each  $P(X_k|Y)$  we condition on the data with the corresponding class.  $\sum_{k=1}^{N} \mathbb{I}(u^{(i)} - 1)$ 

$$\phi = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}{N}$$
  

$$\theta_{k,0} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 0)}$$
  

$$\theta_{k,1} = \frac{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1 \land x_k^{(i)} = 1)}{\sum_{i=1}^{N} \mathbb{I}(y^{(i)} = 1)}$$
  

$$\forall k \in \{1, \dots, K\}$$

#### Model 2: Multinomial Naïve Bayes



Support:

Integer vector (word IDs)

 $\mathbf{x} = [x_1, x_2, \dots, x_M]$  where  $x_m \in \{1, \dots, K\}$  a word id.

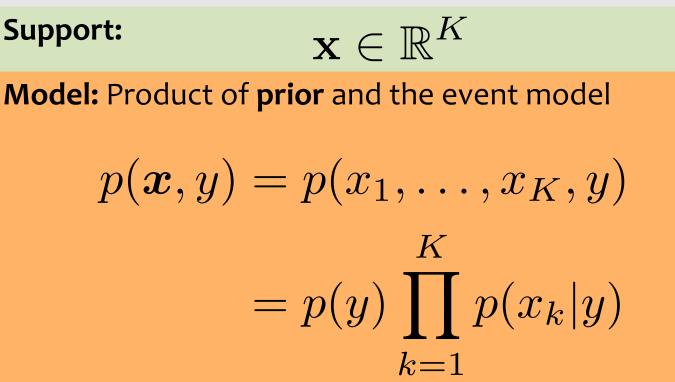
#### **Generative Story:**

$$\begin{aligned} & \text{for } i \in \{1, \dots, N\}: \\ & y^{(i)} \sim \text{Bernoulli}(\phi) \\ & \text{for } j \in \{1, \dots, M_i\}: \quad (\text{Assume } M_i = M \text{ for all } i) \\ & x_i^{(i)} \sim \text{Multinomial}(\boldsymbol{\theta}_{y^{(i)}}, 1) \end{aligned}$$

Model:

$$p_{\phi,\theta}(\boldsymbol{x}, y) = p_{\phi}(y) \prod_{k=1}^{K} p_{\theta_k}(x_k | y)$$
$$= (\phi)^y (1 - \phi)^{(1-y)} \prod_{i=1}^{M_i} \theta_{y,x_i}$$

#### Model 3: Gaussian Naïve Bayes



Gaussian Naive Bayes assumes that  $p(x_k|y)$  is given by a Normal distribution.



#### Model 4: Multiclass Naïve Bayes

#### Model:

The only change is that we permit y to range over C classes.

$$p(\boldsymbol{x}, y) = p(x_1, \dots, x_K, y)$$
  
=  $p(y) \prod_{k=1}^{K} p(x_k | y)$ 

Now,  $y \sim \text{Multinomial}(\phi, 1)$  and we have a separate conditional distribution  $p(x_k|y)$  for each of the C classes.

## THANK YOU



Some of the slides in these lectures have been adapted/borrowed from materials developed by Yingyu Liang, Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, Elad Hazan, Tom Dietterich, and Pedro Domingos.