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Goals for the lecture

» understand the concepts
* linear regression
» closed form solution for linear regression
* lasso
« RMSE, MAE, and R-square
* logistic regression for linear classification
« gradient descent for logistic regression
» multiclass logistic regression
* Cross entropy
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Linear regression @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

. . . . = ] ] 2
* Find f;, (x) = w’x that minimizes L(f,,) = L (whx® —y®)

1
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Linear regression: optimization

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

e Find f,,(x) = w’x that minimizes L(f,,) = —Y>" (W x) — y(i))z

- Let X be a matrix whose i-th row is (x()", y be the vector
(YD, ...,y
_ (@) — () 2 _1 Y.
L(f) = mZ(w x® —y©)* = = |lxw — y |1

o



Linear regression: optimization

» Set the gradient to 0 to get thle minimizer
Vw L(fy) = w —IIXw —y 17=0
i [(Xw — )" (Xw —y)] =0
T, [ wIXTXw = 2wTXTy + yTy] =0
2XTXw —2XTy =0

w=XTX)"1xTy



Linear regression: optimization @

* Algebraic view of the minimizer
- If X is invertible, just solve Xw =y andgetw = X1y
» But typically X is a tall matrix

III —».}I

Normal equation: w = (XTX) "1 X7y




Linear regression with bias @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

* Find f,, , (x) = w'x + b to minimize the loss

 Reduce to the case without bias:
e Letw' = [w; b],x" = [x; 1]
* Then f,, p(x) =wlx+ b = (w)'(x")




Linear regression with lasso penalty @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

e Find f,,(x) = w’x that minimizes

- 1 . 2
L(f) == ) (wTx® —y®@)* + Alwl,
i=1




Evaluation Metrics

« Mean squared error (MSE)

* Root mean squared error (RMSE)

« Mean absolute error (MAE) — average [, error
* R? (coefficient of determination)

« Historically all were computed on training data, and possibly
adjusted after, but really should cross-validate
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 Formulation 1:

Zi(yz‘—h(iﬁ;))z
Zi(yi—g)Q

« Formulation 2: square of Pearson correlation coefficient r
between the label and the prediction.

Recall for x, y:

R* =1

> (x, — %)y, — 7)
BN T Y T
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Linear classification

Class 1

Class 0




Linear classification: natural attempt @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

* Hypothesis f;, (x) = wlx

cy=1ifwlx>0
cy=0ifwix <0
e Prediction: y = step(f,,(x)) = step(w’x)



Linear classification: natural attempt @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

e Find f,(x) = wlx to minimize

L(f) = Hstep(w™x®) % y©]

» Drawback: difficult to optimize
 NP-hard in the worst case




Linear classification: simple approach @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

» Find f;, (x) = w”x that minimizes L(f,,) = =Y (wTx® — y(i))z




Linear classification: simple approach

6t ] -6t @; Figure borrowed from
°© Pattern Recognition and
-8r 1 -8r | Machine Learning, Bishop
4 2 0 2 4 6 s 4 2 0 2 4 6 3

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.



Compare the two

y = step(wlx)




Between the two @

« Prediction bounded in [0,1]
* Smooth

1 I
1+exp(—a)

» Sigmoid: g(a) =

0.5

0
=5 0 5

Figure borrowed from Pattern Recognition and Machine Learning, Bishop



Linear classification: sigmoid prediction

» Squash the output of the linear function .

1+ exp(—wTx)

Sigmoid(w’x) = o(w'x) =

+ Find w that minimizes L(f,,) = — 2, (c(w"x®) — y®)
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Linear classification: logistic regression

» Squash the output of the linear function .

1+ exp(—wTx)
A better approach: Interpret as a probability

1

Sigmoid(w’x) = o(w'x) =

P,(y=0lx)=1-RB,(y =1x) =1-0c(w'x)



Linear classification: logistic regression @

e Find f,, (x) = w”x that minimizes L(f,,) = %Z?&(WTX@ - y(i))z

 Find w that minimizes

m
- 1 o
Liw) = — Ez log P, (y®|x®)
i=1

1 . 1 .
z = — — Ty @@y - — _ T .. (1)
(w) - E loga(w” x'V) - E log[1 — a(wTx®)]
y(l)zl y(l)zo

.




Linear classification: logistic regression @

- Given training data {(xV,y®): 1 < i < m} i.i.d. from distribution
D

 Find w that minimizes

Lw) = —% z loga (wTx(®) _% z log[1 — O.(WTx(i))]

y(i)zl y(i)zo

I



Properties of sigmoid function

« Bounded .
oa) = 1+ exp(—a) €D
« Symmetric
exp(—a)
1 — = — —_ —
o(a) 1+ exp(—a) exp(a)+1 o(=a)
» Gradient

exp(—a)

7(@) = U ¥ exp(—a)?

= 0(a)(1 - 0a(a))
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Review: binary logistic regression

 Sigmoid
o 1

1+ exp(—(wlx + b))
* Interpret as conditional probability

ocwlx +b) =

pw( = 1lx) = o(w'x + b)
pw(@=0[x)=1-p,(y=1[x) =1- O-(WTx + b)

 How to extend to multiclass?



Review: binary logistic regression

» Suppose we model the class-conditional densities p(x|y = i)
and class probabilities p(y = i)

 Conditional probability by Bayesian rule:

p(xly =Dp(ly =1) _ 1
pxly=Dply=1) +plx|ly =2)p(y =2) 1+ exp(—a)

p(y =1|x) = =o(a)

where we define

I pixly=Dply=1) = py=1|x)

Gl =D =2 ey = 21%)




Review: binary logistic regression

» Suppose we model the class-conditional densities p(x|y = i)
and class probabilities p(y = i)

*p(y =1|x) = o(a) = o(w'x + b) is equivalent to setting log
odds to be linear:

p(y=1lx) .
=W

n = x+b
p(y = 2|x)

a=1

* Why linear log odds?



Review: binary logistic regression

» Suppose the class-conditional densities p(x|y = i) is normal

. 1 1 2
prly =) = Nxlup. 1) = o ~arexp{=5 [lx — il 3

* log odd is
xly =1 =1
S pxly =Dply=1) Wy b
p(xly =2)p(y = 2)
where ( )
1 1 p(y =1
W = Uy — Uy, b=—-uip +-piu, +1n

2 2 p(y =2)



Multiclass logistic regression

» Suppose we model the class-conditional densities p(x|y = i)
and class probabilities p(y = i)

 Conditional probability by Bayesian rule:
pixly=0p(y =19 _ exp(a)
2ipixly=Dpy=j) X;exp(a))

p(y =ilx) =

where we define
a; ==In [p(xly = Dp(y = )]



Multiclass logistic regression

» Suppose the class-conditional densities p(x|y = i) is normal

. 1 1 2
prly =) = Nxlup. 1) = o ~arexp{=5 [lx — il 3

* Then

1 T .
a; =In[pxly=Dply =i)] = ——x x + (W ) x+ bt

where

. . 1 1
_ _ _ =T _
wt =, bt__Zui,ul-+lnp(y—l)+ln(2ﬂ)d/2




Multiclass logistic regression

» Suppose the class-conditional densities p(x|y = i) is normal

. 1 1 2
prly =) = Nxlup. 1) = o ~arexp{=5 [lx — il 3

1
« Cancel out — ExTx’ we have
exp(a;)

exp(a) 1T (W) x + b’
J

p(y = il|x) =3

where
1

. . 1
_ _ _ =T _
wt =y, bt__Zui,ul-+lnp(y—l)+ln(2ﬂ)d/2




Multiclass logistic regression: conclusion @

» Suppose the class-conditional densities p(x|y = i) is normal

| 1 1 .
p(xly =) = N(x|u;, 1) = L exp{—|lx — |’}

* Then

exp( (Wi)Tx + bY)

jexp((wW/)Tx + bJ)

which is the hypothesis class for multiclass logistic regression

p(y = i|x) =3

e It is softmax on linear transformation; it can be used to derive
the negative log-likelihood loss (cross entropy)



Softmax

 Away to squash a = (aq, a,, ..., a;, ...) into probability vector p
exp(a;)  exp(a) exp(a;)
softmax(a) =

Yexp(a)’ X exp(a)’ 'Y exp(a;)’

- Behave like max: when a; > a;(Vj # i), p; = 1,p; =0



Cross entropy for conditional distribution ()

 Let py.a(v|x) denote the empirical distribution of the data
» Negative log-likelihood
1 g g
T ;Z?& logp(y — y(l) |x(l)) == _Epdata(Y|x) lng(ylx)
is the cross entropy between p,.:, and the model output p

* Information theory viewpoint: KL divergence
D (PdatalIP) = Epgy, [1087222] = Ey ... [108 Paatal — Epgy, [l0g P]

p
\ ) \ )

1 1
Entropy; constant  Cross entropy




Cross entropy for full distribution

* Let py.a(x, v) denote the empirical distribution of the data
» Negative log-likelihood
1 q g
—— ¥R logp(xW,y D) = —Ep ) 108 P(X, )
is the cross entropy between p,.:, and the model output p



Summary of the principles

* Discriminative approach with negative log-likelihood loss
« Step 1: specify p(v|x)
» Step 2: use MLE to derive the negative log-likelihood loss

* Example: if p(y|x) is sigmoid over a linear function of x, then
we get logistic regression



Summary of the principles

* From generative to discriminative

« Step 0: specify p(x|y) and p(y)

« Step 1: compute p(y|x)

» Step 2: use MLE to derive the negative log-likelihood loss

« Example: if p(x|y) are Gaussians, then we get logistic
regression



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Crawen, David
O\ Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley,
Elad Hazan, Tom Dietterich, and Pedro Domingos.
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