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Goals for the lecture
• understand the concepts

• linear regression
• closed form solution for linear regression
• lasso
• RMSE, MAE, and R-square
• logistic regression for linear classification
• gradient descent for logistic regression
• multiclass logistic regression
• cross entropy



Linear Regression



Linear regression

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑓. 𝑥 = 𝑤1𝑥 that minimizes 2𝐿 𝑓. = 4
5
∑"745 𝑤1𝑥(") − 𝑦(") 9

𝑙9 loss; also called mean 
squared error

Hypothesis class 𝓗



Linear regression: optimization

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑓. 𝑥 = 𝑤1𝑥 that minimizes 2𝐿 𝑓. = 4
5
∑"745 𝑤1𝑥(") − 𝑦(") 9

• Let 𝑋 be a matrix whose 𝑖-th row is 𝑥(") 1, 𝑦 be the vector
𝑦(4), … , 𝑦(5) 1

2𝐿 𝑓. =
1
𝑚>

"74

5

𝑤1𝑥(") − 𝑦(") 9 =
1
𝑚 ⃦𝑋𝑤 − 𝑦 ⃦99



Linear regression: optimization

• Set the gradient to 0 to get the minimizer
𝛻. 2𝐿 𝑓. = 𝛻.

1
𝑚 ⃦𝑋𝑤 − 𝑦 ⃦99 = 0

𝛻.[ 𝑋𝑤 − 𝑦 1(𝑋𝑤 − 𝑦)] = 0

𝛻.[ 𝑤1𝑋1𝑋𝑤 − 2𝑤1𝑋1𝑦 + 𝑦1𝑦] = 0

2𝑋1𝑋𝑤 − 2𝑋1𝑦 = 0

w = 𝑋1𝑋 G4𝑋1𝑦



Linear regression: optimization

• Algebraic view of the minimizer
• If 𝑋 is invertible, just solve 𝑋𝑤 = 𝑦 and get 𝑤 = 𝑋G4𝑦
• But typically 𝑋 is a tall matrix

𝑋

𝑤
=
𝑦

𝑋1𝑋 𝑤
=
𝑋1𝑦

Normal equation: w = 𝑋1𝑋 G4𝑋1𝑦



Linear regression with bias

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑓.,H 𝑥 = 𝑤1𝑥 + 𝑏 to minimize the loss

• Reduce to the case without bias:
• Let 𝑤J = 𝑤; 𝑏 , 𝑥J = 𝑥; 1
• Then 𝑓.,H 𝑥 = 𝑤1𝑥 + 𝑏 = 𝑤J 1(𝑥J)

Bias term



Linear regression with lasso penalty

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑓. 𝑥 = 𝑤1𝑥 that minimizes

2𝐿 𝑓. =
1
𝑚
>
"74

5

𝑤1𝑥(") − 𝑦(") 9 + 𝜆 𝑤 4

lasso penalty: 𝑙4 norm of the 
parameter, encourages sparsity



• Mean squared error (MSE)
• Root mean squared error (RMSE)
• Mean absolute error (MAE) – average 𝑙4 error
• R2 (coefficient of determination)
• Historically all were computed on training data, and possibly 

adjusted after, but really should cross-validate

Evaluation Metrics



• Formulation 1:

• Formulation 2: square of Pearson correlation coefficient r 
between the label and the prediction.  

Recall for x, y:
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Linear Classification



Linear classification

𝑤1𝑥 = 0

Class 1

Class 0

𝑤

𝑤1𝑥 > 0

𝑤1𝑥 < 0



Linear classification: natural attempt

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Hypothesis 𝑓. 𝑥 = 𝑤1𝑥
• 𝑦 = 1 if 𝑤1𝑥 > 0
• 𝑦 = 0 if 𝑤1𝑥 < 0

• Prediction: 𝑦 = step(𝑓. 𝑥 ) = step(𝑤1𝑥)
Linear model 𝓗



Linear classification: natural attempt

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑓. 𝑥 = 𝑤1𝑥 to minimize

2𝐿 𝑓. =
1
𝑚
>
"74

5

𝕀[step(𝑤1𝑥 " ) ≠ 𝑦(")]

• Drawback: difficult to optimize
• NP-hard in the worst case 0-1 loss



Linear classification: simple approach

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑓. 𝑥 = 𝑤1𝑥 that minimizes 2𝐿 𝑓. = 4
5
∑"745 𝑤1𝑥(") − 𝑦(") 9

Reduce to linear regression; 
ignore the fact 𝑦 ∈ {0,1}



Linear classification: simple approach

Figure borrowed from
Pattern Recognition and
Machine Learning, Bishop

Drawback: not 
robust to “outliers”



Compare the two

𝑦 = 𝑤1𝑥

𝑤1𝑥

𝑦

𝑦 = step(𝑤1𝑥)



Between the two

• Prediction bounded in [0,1]
• Smooth

• Sigmoid: 𝜎 𝑎 = 4
4Z[\](G^)

Figure borrowed from Pattern Recognition and Machine Learning, Bishop



Linear classification: sigmoid prediction

• Squash the output of the linear function
Sigmoid 𝑤1𝑥 = 𝜎 𝑤1𝑥 =

1
1 + exp(−𝑤1𝑥)

• Find 𝑤 that minimizes 2𝐿 𝑓. = 4
5
∑"745 𝜎(𝑤1𝑥 " ) − 𝑦(")

9



Linear Classification by 
Logistic Regression



Linear classification: logistic regression

• Squash the output of the linear function
Sigmoid 𝑤1𝑥 = 𝜎 𝑤1𝑥 =

1
1 + exp(−𝑤1𝑥)

• A better approach: Interpret as a probability
𝑃.(𝑦 = 1|𝑥) = 𝜎 𝑤1𝑥 =

1
1 + exp(−𝑤1𝑥)

𝑃. 𝑦 = 0 𝑥 = 1 − 𝑃. 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤1𝑥



Linear classification: logistic regression

• Find 𝑓. 𝑥 = 𝑤1𝑥 that minimizes 2𝐿 𝑓. = 4
5
∑"745 𝑤1𝑥(") − 𝑦(")

9

• Find 𝑤 that minimizes

2𝐿 𝑤 = −
1
𝑚>

"74

5

log 𝑃. 𝑦(") 𝑥(")

2𝐿 𝑤 = −
1
𝑚

>
e(f)74

log𝜎(𝑤1𝑥(")) −
1
𝑚

>
e(f)7g

log[1 − 𝜎 𝑤1𝑥(") ]

Logistic regression:
MLE with sigmoid



Linear classification: logistic regression

• Given training data 𝑥 " , 𝑦(") : 1 ≤ 𝑖 ≤ 𝑚 i.i.d. from distribution 
𝐷

• Find 𝑤 that minimizes

2𝐿 𝑤 = −
1
𝑚 >

e(f)74

log𝜎(𝑤1𝑥(")) −
1
𝑚 >

e(f)7g

log[1 − 𝜎 𝑤1𝑥(") ]

No close form solution;
Need to use gradient descent



Properties of sigmoid function

• Bounded
𝜎 𝑎 =

1
1 + exp(−𝑎)

∈ (0,1)

• Symmetric

1 − 𝜎 𝑎 =
exp −𝑎

1 + exp −𝑎
=

1
exp 𝑎 + 1

= 𝜎(−𝑎)

• Gradient
𝜎J(𝑎) =

exp −𝑎
1 + exp −𝑎 9 = 𝜎(𝑎)(1 − 𝜎 𝑎 )



Multiple-Class Logistic 
Regression



Review: binary logistic regression

• Sigmoid
𝜎 𝑤1𝑥 + 𝑏 =

1
1 + exp(−(𝑤1𝑥 + 𝑏))

• Interpret as conditional probability

𝑝. 𝑦 = 1 𝑥 = 𝜎 𝑤1𝑥 + 𝑏

𝑝. 𝑦 = 0 𝑥 = 1 − 𝑝. 𝑦 = 1 𝑥 = 1 − 𝜎 𝑤1𝑥 + 𝑏

• How to extend to multiclass?



Review: binary logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖
and class probabilities 𝑝 𝑦 = 𝑖

• Conditional probability by Bayesian rule:

𝑝 𝑦 = 1|𝑥 =
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)

𝑝 𝑥|𝑦 = 1 𝑝 𝑦 = 1 + 𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2)
=

1
1 + exp(−𝑎)

= 𝜎(𝑎)

where we define 
𝑎 ≔ ln

𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)
𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2) = ln

𝑝 𝑦 = 1|𝑥
𝑝 𝑦 = 2|𝑥



Review: binary logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖
and class probabilities 𝑝 𝑦 = 𝑖

• 𝑝 𝑦 = 1|𝑥 = 𝜎 𝑎 = 𝜎(𝑤1𝑥 + 𝑏) is equivalent to setting log 
odds to be linear:

𝑎 = ln
𝑝 𝑦 = 1|𝑥
𝑝 𝑦 = 2|𝑥

= 𝑤1𝑥 + 𝑏

• Why linear log odds?



Review: binary logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇", 𝐼 =
1

2𝜋 o/9 exp{−
1
2 𝑥 − 𝜇"

9
}

• log odd is

𝑎 = ln
𝑝 𝑥|𝑦 = 1 𝑝(𝑦 = 1)
𝑝 𝑥|𝑦 = 2 𝑝(𝑦 = 2) = 𝑤1𝑥 + 𝑏

where 
𝑤 = 𝜇4 − 𝜇9, 𝑏 = −

1
2𝜇4

1𝜇4 +
1
2𝜇9

1𝜇9 + ln
𝑝(𝑦 = 1)
𝑝(𝑦 = 2)



Multiclass logistic regression

• Suppose we model the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖
and class probabilities 𝑝 𝑦 = 𝑖

• Conditional probability by Bayesian rule:

𝑝 𝑦 = 𝑖|𝑥 =
𝑝 𝑥|𝑦 = 𝑖 𝑝(𝑦 = 𝑖)
∑q 𝑝 𝑥|𝑦 = 𝑗 𝑝(𝑦 = 𝑗)

=
exp(𝑎")
∑q exp(𝑎q)

where we define 
𝑎" ≔ ln [𝑝 𝑥 𝑦 = 𝑖 𝑝 𝑦 = 𝑖 ]



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇", 𝐼 =
1

2𝜋 o/9 exp{−
1
2 𝑥 − 𝜇"

9
}

• Then

𝑎" ≔ ln 𝑝 𝑥 𝑦 = 𝑖 𝑝 𝑦 = 𝑖 = −
1
2
𝑥1𝑥 + 𝑤"

1

𝑥 + 𝑏"

where 
𝑤" = 𝜇", 𝑏" = −

1
2
𝜇"1𝜇" + ln 𝑝 𝑦 = 𝑖 + ln

1
2𝜋 o/9



Multiclass logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇", 𝐼 =
1

2𝜋 o/9 exp{−
1
2 𝑥 − 𝜇"

9
}

• Cancel out −4
9
𝑥1𝑥, we have

𝑝 𝑦 = 𝑖|𝑥 =
exp(𝑎")
∑q exp(𝑎q)

, 𝑎" ≔ 𝑤" 1𝑥 + 𝑏"

where 
𝑤" = 𝜇", 𝑏" = −

1
2𝜇"

1𝜇" + ln 𝑝 𝑦 = 𝑖 + ln
1

2𝜋 o/9



Multiclass logistic regression: conclusion

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 = 𝑖 is normal

𝑝 𝑥 𝑦 = 𝑖 = 𝑁 𝑥|𝜇", 𝐼 =
1

2𝜋 o/9 exp{−
1
2 𝑥 − 𝜇"

9
}

• Then

𝑝 𝑦 = 𝑖|𝑥 =
exp( 𝑤" 1𝑥 + 𝑏")

∑q exp( 𝑤q 1𝑥 + 𝑏q)
which is the hypothesis class for multiclass logistic regression

• It is softmax on linear transformation; it can be used to derive 
the negative log-likelihood loss (cross entropy)



Softmax

• A way to squash 𝑎 = (𝑎4, 𝑎9, … , 𝑎", … ) into probability vector 𝑝

softmax 𝑎 =
exp(𝑎4)
∑q exp(𝑎q)

,
exp(𝑎9)
∑q exp(𝑎q)

, … ,
exp 𝑎"
∑q exp 𝑎q

, …

• Behave like max: when 𝑎" ≫ 𝑎q ∀𝑗 ≠ 𝑖 , 𝑝" ≅ 1, 𝑝q ≅ 0



Cross entropy for conditional distribution

• Let 𝑝yz{z(𝑦|𝑥) denote the empirical distribution of the data
• Negative log-likelihood 

− 4
5
∑"745 log 𝑝 𝑦 = 𝑦(") 𝑥(") = −E}~���(e|�) log 𝑝(𝑦|𝑥)

is the cross entropy between 𝑝yz{z and the model output 𝑝

• Information theory viewpoint: KL divergence
𝐷(𝑝yz{z| 𝑝 = E}~���[log

}~���
}
] = E}~��� [log 𝑝yz{z] − E}~���[log 𝑝]

Entropy; constant Cross entropy



Cross entropy for full distribution

• Let 𝑝yz{z(𝑥, 𝑦) denote the empirical distribution of the data
• Negative log-likelihood 

− 4
5
∑"745 log 𝑝(𝑥 " , 𝑦(")) = −E}~���(�,e) log 𝑝(𝑥, 𝑦)

is the cross entropy between 𝑝yz{z and the model output 𝑝



Summary of the principles 

• Discriminative approach with negative log-likelihood loss
• Step 1: specify 𝑝(𝑦|𝑥)
• Step 2: use MLE to derive the negative log-likelihood loss

• Example: if 𝑝(𝑦|𝑥) is sigmoid over a linear function of 𝑥, then 
we get logistic regression



Summary of the principles 

• From generative to discriminative
• Step 0: specify 𝑝 𝑥 𝑦 and 𝑝(𝑦)
• Step 1: compute 𝑝(𝑦|𝑥)
• Step 2: use MLE to derive the negative log-likelihood loss

• Example: if 𝑝(𝑥|𝑦) are Gaussians, then we get logistic 
regression



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 
Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, 

Elad Hazan, Tom Dietterich, and Pedro Domingos. 


