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Goals for the lecture

you should understand the following concepts
• autoencoder
• restricted Boltzmann machine (RBM)
• Nash equilibrium
• minimax game
• generative adversarial network (GAN)
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Autoencoder



Autoencoder

• Neural networks trained to attempt to copy its input to its output

• Contain two parts:
• Encoder: map the input to a hidden representation
• Decoder: map the hidden representation to the output



Autoencoder
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Autoencoder
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	ℎ = 𝑓 𝑥 , 𝑟 = 𝑔 ℎ = 𝑔(𝑓 𝑥 )



Why want to copy input to output

• Not really care about copying

• Interesting case: NOT able to copy exactly but strive to do so
• Autoencoder forced to select which aspects to preserve and 

thus hopefully can learn useful properties of the data

• Historical note: goes back to (LeCun, 1987; Bourlard and Kamp, 
1988; Hinton and Zemel, 1994).



Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

		𝐿 𝑥, 𝑟 = 	𝐿(𝑥, 𝑔 𝑓 𝑥 )

ℎ𝑥 𝑟



Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

		𝐿 𝑥, 𝑟 = 	𝐿(𝑥, 𝑔 𝑓 𝑥 )

• Special case: 𝑓, 𝑔 linear, 𝐿 mean square error
• Reduces to Principal Component Analysis



Undercomplete autoencoder

• What about nonlinear encoder and decoder?

• Capacity should not be too large
• Suppose given data 𝑥-, 𝑥., … , 𝑥0

• Encoder maps 𝑥1 to 𝑖
• Decoder maps	𝑖 to 𝑥1

• One dim ℎ suffices for perfect reconstruction



Regularization

• Typically NOT 
• Keeping the encoder/decoder shallow or
• Using small code size

• Regularized autoencoders: add regularization term that 
encourages the model to have other properties

• Sparsity of the representation (sparse autoencoder)
• Robustness to noise or to missing inputs (denoising autoencoder)



Sparse autoencoder

• Constrain the code to have sparsity
• Training: minimize a loss function

		𝐿3 = 	𝐿(𝑥, 𝑔 𝑓 𝑥 ) + 𝑅(ℎ)

ℎ𝑥 𝑟



Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)
• MLE on 𝑥

log 𝑝(𝑥) = log:𝑝(ℎ;, 𝑥)
�

=>
	

• L Hard to sum over ℎ;



Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)
• MLE on 𝑥

max log 𝑝(𝑥) = max log:𝑝(ℎ;, 𝑥)
�

=>

• Approximation: suppose ℎ = 𝑓(𝑥) gives the most likely hidden 
representation, and ∑ 𝑝(ℎ;, 𝑥)�

=> can be approximated by 𝑝(ℎ, 𝑥)



Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)
• Approximate MLE on 𝑥, ℎ = 𝑓(𝑥)

max	 log 𝑝(ℎ, 𝑥) = max	 log 𝑝(𝑥|ℎ) + log 𝑝(ℎ)

Regularization

Loss



Sparse autoencoder

• Constrain the code to have sparsity

• Laplacian prior: 𝑝 ℎ = D
.
exp	(− D

.
ℎ -)

• Training: minimize a loss function

		𝐿3 = 	𝐿(𝑥, 𝑔 𝑓 𝑥 ) + 𝜆 ℎ -



Denoising autoencoder

• Traditional autoencoder: encourage to learn 𝑔 𝑓 ⋅ 	to be 
identity 

• Denoising : minimize a loss function

		𝐿 𝑥, 𝑟 = 	𝐿(𝑥, 𝑔 𝑓 𝑥I )
where 𝑥I is 𝑥 + 𝑛𝑜𝑖𝑠𝑒



Boltzmann Machine



Boltzmann machine

• Introduced by Ackley et al. (1985)

• General “connectionist” approach to learning arbitrary 
probability distributions over binary vectors

• Special case of energy model:  𝑝 𝑥 = NOP	(QR S )
T



Boltzmann machine

• Energy model:  

𝑝 𝑥 =
exp	(−𝐸 𝑥 )

𝑍
• Boltzmann machine: special case of energy model with

𝐸 𝑥 = −𝑥W𝑈𝑥 − 𝑏W𝑥
where 𝑈 is the weight matrix and 𝑏 is the bias parameter



Boltzmann machine with latent variables

• Some variables are not observed

𝑥 = 𝑥Z, 𝑥= , 	 𝑥Z	visible, 	𝑥=	hidden

𝐸 𝑥 = −𝑥ZW𝑅𝑥Z − 𝑥ZW𝑊𝑥= − 𝑥=W𝑆𝑥= − 𝑏W𝑥Z − 𝑐W𝑥=

• Universal approximator of probability mass functions



Maximum likelihood 

• Suppose we are given data 𝑋 = 𝑥Z-, 𝑥Z., … , 𝑥Z0

• Maximum likelihood is to maximize
log 𝑝 𝑋 =:log 𝑝(𝑥Z1 )

�

1
where

𝑝 𝑥Z =:𝑝(𝑥Z, 𝑥=)
�

Sf

=:
1
𝑍
exp(−𝐸(𝑥Z, 𝑥=))

�

Sf

• 𝑍 = ∑exp(−𝐸(𝑥Z, 𝑥=))�
� : partition function, difficult to compute 



Restricted Boltzmann machine

• Invented under the name harmonium (Smolensky, 1986)
• Popularized by Hinton and collaborators to Restricted 

Boltzmann machine



Restricted Boltzmann machine

• Special case of Boltzmann machine with latent variables:  

𝑝 𝑣, ℎ =
exp	(−𝐸 𝑣, ℎ )

𝑍
where the energy function is

𝐸 𝑣, ℎ = −𝑣W𝑊ℎ − 𝑏W𝑣 − 𝑐Wℎ
with the weight matrix 𝑊 and the bias	𝑏, 𝑐

• Partition function
𝑍 =::exp	(−𝐸 𝑣, ℎ )

�

=

�

Z



Restricted Boltzmann machine

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Restricted Boltzmann machine

• Conditional distribution is factorial

𝑝 ℎ|𝑣 =
𝑝(𝑣, ℎ)
𝑝(𝑣)

=i𝑝(ℎj|𝑣)
�

j

and
𝑝 ℎj = 1|𝑣 = 𝜎 𝑐j + 𝑣W𝑊:,j

is logistic function



Restricted Boltzmann machine

• Similarly,
𝑝 𝑣|ℎ =

𝑝(𝑣, ℎ)
𝑝(ℎ)

=i𝑝(𝑣1|ℎ)
�

1

and
𝑝 𝑣1 = 1|ℎ = 𝜎 𝑏1 +𝑊1,:ℎ

is logistic function



Generative Adversarial 
Networks (GAN)

See Ian Goodfellow’s tutorial slides: 
http://www.iangoodfellow.com/slides/2018-06-22-gan_tutorial.pdf



Generative Adversarial Networks
• Approach: Set up zero-sum game between deep nets to

• Generator: Generate data that looks like training set
• Discriminator: Distinguish between real and synthetic 

data

• Motivation:
• Building accurate generative models is hard (e.g., 

learning and sampling from Markov net or Bayes net)
• Want to use all our great progress on supervised 

learners to do this unsupervised learning task better
• Deep nets may be our favorite supervised learner, 

especially for image data, if nets are convolutional (use 
tricks of sliding windows with parameter tying, cross-
entropy transfer function, batch normalization)



Does It Work?

Thanks, Ian Goodfellow, NIPS 2016 Tutorial on GANS, for this and most of
what follows… 



A Bit More on GAN Algorithm



The Rest of the Details

• Use deep convolutional neural networks for Discriminator 
D and Generator G

• Let x denote trainset and z denote random, uniform input

• Set up zero-sum game by giving D the following 
objective, and G the negation of it:

• Let D and G compute their gradients simultaneously, 
each make one step in direction of the gradient, and 
repeat until neither can make progress… Minimax



More Math on GAN

• Real data distribution 𝑞(𝑥)
• Fake data distribution 𝑝n 𝑥 ≔ [𝑥 = 𝐺n 𝑧 , 𝑧~𝑝 𝑧 ]
• Discriminator 𝐷 𝑥 ≔ 𝜎(𝑓v 𝑥 )

• GAN: 𝑚𝑖𝑛n𝑚𝑎𝑥v𝐸y S log 𝜎(𝑓v 𝑥 ) +𝐸z{ S log(1 − 𝜎 𝑓v 𝑥 )

• Given 𝜃, the optimal 𝑓v∗ 𝑥 = log y(S)
z{(S)

(not necessarily 
realizable by the discriminator neural network)

• Plug 𝑓v∗ 𝑥 back in GAN: minn 𝐽𝑆(𝑝n, 𝑞)
• Recall

• Jensen-Shannon divergence 𝐽𝑆 𝑝, 𝑞 = 𝐾𝐿 𝑝|| z�y
.

+ 𝐾𝐿(𝑞|| z�y
.
)

• Kullback-Leibler divergence 𝐾𝐿 𝑝||𝑞 = ∑ 𝑝 𝑥 log z(S)
y(S)

�
S

• Maximum Likelihood Estimate minn 𝐾𝐿(𝑞||𝑝n)



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 
Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley, 
Elad Hazan, Tom Dietterich, Pedro Domingos, Geoffrey Hinton, 

and Ian Goodfellow.


