- Neural Network Part 5:
Unsu

&

N

Goals for the lecture

you should understand the following concepts
» autoencoder

restricted Boltzmann machine (RBM)

Nash equilibrium

minimax game

generative adversarial network (GAN)

: vwﬂill
aer?

Autoencoder @

* Neural networks trained to attempt to copy its input to its output

 Contain two parts:
* Encoder: map the input to a hidden representation
» Decoder: map the hidden representation to the output

Autoencoder

Hidden representation (the code)

Input Reconstruction

Autoencoder

Encoder f (- Decoder g(+)

h=f(x),r=g(h)=g({(x))

Why want to copy input to output

 Not really care about copying

* Interesting case: NOT able to copy exactly but strive to do so

» Autoencoder forced to select which aspects to preserve and
thus hopefully can learn useful properties of the data

« Historical note: goes back to (LeCun, 1987; Bourlard and Kamp,
1988; Hinton and Zemel, 1994).

Undercomplete autoencoder

» Constrain the code to have smaller dimension than the input
* Training: minimize a loss function

L(x,7) = L(x, g(f(x)))

Undercomplete autoencoder

» Constrain the code to have smaller dimension than the input
* Training: minimize a loss function

L(x,7) = L(x,g(f(X)))

« Special case: f, g linear, L mean square error
» Reduces to Principal Component Analysis

Undercomplete autoencoder

 What about nonlinear encoder and decoder?

 Capacity should not be too large

e Suppose given data x, x,, ..., x,
« Encoder maps x; to i
« Decoder maps i to x;

* One dim h suffices for perfect reconstruction

Regularization

 Typically NOT
» Keeping the encoder/decoder shallow or
» Using small code size

» Regularized autoencoders: add regularization term that
encourages the model to have other properties
» Sparsity of the representation (sparse autoencoder)
» Robustness to noise or to missing inputs (denoising autoencoder)

Sparse autoencoder

« Constrain the code to have sparsity
 Training: minimize a loss function

Lg = L(x,9(f(x))) + R(h)

Probabilistic view of regularizing h

« Suppose we have a probabilistic model p(h, x)
* MLE on x

logp(x) = 10g2 p(h',x)
hl

« ® Hard to sum over h’

Probabilistic view of regularizing h

« Suppose we have a probabilistic model p(h, x)
* MLE on x

maxlogp(x) = maxlogE p(h', x)
hl

» Approximation: suppose h = f(x) gives the most likely hidden
representation, and ., p(h’, x) can be approximated by p(h, x)

Probabilistic view of regularizing h @

« Suppose we have a probabilistic model p(h, x)
* Approximate MLE on x, h = f(x)
max logp(h,x) = max logp(x|h) + logp(h)

Loss

Regularization

Sparse autoencoder

« Constrain the code to have sparsity

 Laplacian prior: p(h) = %exp(—%1 |h|1)

 Training: minimize a loss function

Lr = L(x,g(f(x))) + Alhl;

Denoising autoencoder

 Traditional autoencoder: encourage to learn g(f(-)) to be
identity

« Denoising : minimize a loss function

L(x,7) = L(x, g(f(®)))

where x IS x + noise

N

&

Boltzmann machine

* Introduced by Ackley et al. (1985)

« General “connectionist” approach to learning arbitrary
probability distributions over binary vectors

p (X) _ eXp(_ZE(x))

« Special case of energy model:

Boltzmann machine

* Energy model:

b (x) = eXp(—ZE(x))

« Boltzmann machine: special case of energy model with
E(x) = —xTUx —bTx

where U is the weight matrix and b is the bias parameter

Boltzmann machine with latent variables @

« Some variables are not observed
x = (x,,xp), x, visible, x; hidden

E(x) = —xIRx, — xIWx;, — x£ Sx;, — bTx, — cTxy,

 Universal approximator of probability mass functions

Maximum likelihood

 Suppose we are given data X = (x}, xZ, ..., x})
 Maximum likelihood is to maximize

logp(X) = 2 log p(xi)

where

1
p) =) () =) —exp(~E(xy, 11))

Xh

« 7 =), exp(—E(x,,xp)): partition function, difficult to compute

Restricted Boltzmann machine

* Invented under the name harmonium (Smolensky, 1986)

» Popularized by Hinton and collaborators to Restricted
Boltzmann machine

Restricted Boltzmann machine

» Special case of Boltzmann machine with latent variables:
exp(—E (v, h))
p(v, h) =

Z
where the energy function is
E(v,h) = —vITWh —bTv —cTh

with the weight matrix I/ and the bias b, c
* Partition function

Z = Z Z exp(—E (v, h))
v h

Restricted Boltzmann machine @

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Restricted Boltzmann machine

» Conditional distribution is factorial
‘ ‘ p h v

p(h; = 1|v) = o(¢; +v™W,)
is logistic function

p(h|v) =

and

Restricted Boltzmann machine

« Similarly,

p(,h) _
p(h) 1

i

p(v|h) =

P(vilh)

and
p(v; = 1|h) = a(b; + W;.h)

is logistic function

2 = =

=
: e = =
e > ‘ =
— = ' S e

-

Generative Adversarial
Networks (G AN)

<

See lan Goodfellow!s tutorial slides:
http://www.iangoodfellow.com/slides/2018-06-22-gans&tutorial. p_df

(""@,
_‘

Generative Adversarial Networks

» Approach: Set up zero-sum game between deep nets to
* Generator: Generate data that looks like training set
. ([j)i?criminator: Distinguish between real and synthetic
ata

* Motivation:
« Building accurate generative models is hard (e.g.,
learning and sampling from Markov net or Bayes net)

» Want to use all our great progress on supervised
learners to do this unsupervised learning task better

* Deep nets may be our favorite supervised learner
especially for image data, if nets are convolutional (use
tricks of sliding windows with parameter tying, cross-
entropy transfer function, batch normalization)

Does It Work?

Ground Truth Adversarial

Thanks, lan Goodfellow, NIPS 2016 Tutorial on GANS, for this and most of
what follows...

A Bit More on GAN Algorithm

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

i -~
N i:b 4
T ;

Differentiable
function G

*

Input noise z >

D(x) tries to be
near 1

Differentiable
function D

T sampled from
data

aYavaYaYem
o
u

The Rest of the Details

» Use deep convolutional neural networks for Discriminator
D and Generator G

 Let x denote trainset and z denote random, uniform input

« Set up zero-sum game by giving D the following
objective, and G the negation of it:

_%E:Ddiata log D(w) T %Ez log (1 o D (G(z)))

* Let D and G compute their gradients simultaneously,
each make one step in direction of the gradient, and
repeat until neither can make progress... Minimax

More Math on GAN

» Real data distribution g(x)
 Fake data distribution pg(x) =[x = Gg(2),z~p(2)]
* Discriminator D (x) := a(fz(x))

* GAN: mingmaxgE 4 (x)log o(fp(x)) +Ep,x)log(l — o (fﬁ (x)))

- Given 6, the optimal f3+(x) = log pqe(g) (not necessarily

realizable by the discriminator neural network)
* Plug fz-(x) back in GAN: ming /S(pg, q)

* Recall
- Jensen-Shannon divergence JS(p, q) = KL (p||¥) + KL(q|| %)
- Kullback-Leibler divergence KL(p||q) = X, p(x) log%

« Maximum Likelihood Estimate ming KL(q||pg)

THANK YOU

Some of the slides in these lectures have been adapted/b.orrowed
from materials developed by Yingyu Liang, Mark Crawen, David

@I’) Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley,
\‘-‘

-

Elad Hazan, Tom Dietterich, Pedro Domingos, Geoffrey Hinton,
4 W and lan Goodfellow.

