
Neural Network Part 5:
Unsupervised Models

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts
• autoencoder
• restricted Boltzmann machine (RBM)
• Nash equilibrium
• minimax game
• generative adversarial network (GAN)

2

Autoencoder

Autoencoder

• Neural networks trained to attempt to copy its input to its output

• Contain two parts:
• Encoder: map the input to a hidden representation
• Decoder: map the hidden representation to the output

Autoencoder

ℎ

𝑥 𝑟

Hidden representation (the code)

ReconstructionInput

Autoencoder

ℎ

𝑥 𝑟

Decoder 𝑔(⋅)Encoder	𝑓(⋅)

	ℎ = 𝑓 𝑥 , 𝑟 = 𝑔 ℎ = 𝑔(𝑓 𝑥)

Why want to copy input to output

• Not really care about copying

• Interesting case: NOT able to copy exactly but strive to do so
• Autoencoder forced to select which aspects to preserve and

thus hopefully can learn useful properties of the data

• Historical note: goes back to (LeCun, 1987; Bourlard and Kamp,
1988; Hinton and Zemel, 1994).

Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

		𝐿 𝑥, 𝑟 = 	𝐿(𝑥, 𝑔 𝑓 𝑥)

ℎ𝑥 𝑟

Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

		𝐿 𝑥, 𝑟 = 	𝐿(𝑥, 𝑔 𝑓 𝑥)

• Special case: 𝑓, 𝑔 linear, 𝐿 mean square error
• Reduces to Principal Component Analysis

Undercomplete autoencoder

• What about nonlinear encoder and decoder?

• Capacity should not be too large
• Suppose given data 𝑥-, 𝑥., … , 𝑥0

• Encoder maps 𝑥1 to 𝑖
• Decoder maps	𝑖 to 𝑥1

• One dim ℎ suffices for perfect reconstruction

Regularization

• Typically NOT
• Keeping the encoder/decoder shallow or
• Using small code size

• Regularized autoencoders: add regularization term that
encourages the model to have other properties

• Sparsity of the representation (sparse autoencoder)
• Robustness to noise or to missing inputs (denoising autoencoder)

Sparse autoencoder

• Constrain the code to have sparsity
• Training: minimize a loss function

		𝐿3 = 	𝐿(𝑥, 𝑔 𝑓 𝑥) + 𝑅(ℎ)

ℎ𝑥 𝑟

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)
• MLE on 𝑥

log 𝑝(𝑥) = log:𝑝(ℎ;, 𝑥)
�

=>
	

• L Hard to sum over ℎ;

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)
• MLE on 𝑥

max log 𝑝(𝑥) = max log:𝑝(ℎ;, 𝑥)
�

=>

• Approximation: suppose ℎ = 𝑓(𝑥) gives the most likely hidden
representation, and ∑ 𝑝(ℎ;, 𝑥)�

=> can be approximated by 𝑝(ℎ, 𝑥)

Probabilistic view of regularizing ℎ

• Suppose we have a probabilistic model 𝑝(ℎ, 𝑥)
• Approximate MLE on 𝑥, ℎ = 𝑓(𝑥)

max	 log 𝑝(ℎ, 𝑥) = max	 log 𝑝(𝑥|ℎ) + log 𝑝(ℎ)

Regularization

Loss

Sparse autoencoder

• Constrain the code to have sparsity

• Laplacian prior: 𝑝 ℎ = D
.
exp	(− D

.
ℎ -)

• Training: minimize a loss function

		𝐿3 = 	𝐿(𝑥, 𝑔 𝑓 𝑥) + 𝜆 ℎ -

Denoising autoencoder

• Traditional autoencoder: encourage to learn 𝑔 𝑓 ⋅ 	to be
identity

• Denoising : minimize a loss function

		𝐿 𝑥, 𝑟 = 	𝐿(𝑥, 𝑔 𝑓 𝑥I)
where 𝑥I is 𝑥 + 𝑛𝑜𝑖𝑠𝑒

Boltzmann Machine

Boltzmann machine

• Introduced by Ackley et al. (1985)

• General “connectionist” approach to learning arbitrary
probability distributions over binary vectors

• Special case of energy model: 𝑝 𝑥 = NOP	(QR S)
T

Boltzmann machine

• Energy model:

𝑝 𝑥 =
exp	(−𝐸 𝑥)

𝑍
• Boltzmann machine: special case of energy model with

𝐸 𝑥 = −𝑥W𝑈𝑥 − 𝑏W𝑥
where 𝑈 is the weight matrix and 𝑏 is the bias parameter

Boltzmann machine with latent variables

• Some variables are not observed

𝑥 = 𝑥Z, 𝑥= , 	 𝑥Z	visible, 	𝑥=	hidden

𝐸 𝑥 = −𝑥ZW𝑅𝑥Z − 𝑥ZW𝑊𝑥= − 𝑥=W𝑆𝑥= − 𝑏W𝑥Z − 𝑐W𝑥=

• Universal approximator of probability mass functions

Maximum likelihood

• Suppose we are given data 𝑋 = 𝑥Z-, 𝑥Z., … , 𝑥Z0

• Maximum likelihood is to maximize
log 𝑝 𝑋 =:log 𝑝(𝑥Z1)

�

1
where

𝑝 𝑥Z =:𝑝(𝑥Z, 𝑥=)
�

Sf

=:
1
𝑍
exp(−𝐸(𝑥Z, 𝑥=))

�

Sf

• 𝑍 = ∑exp(−𝐸(𝑥Z, 𝑥=))�
� : partition function, difficult to compute

Restricted Boltzmann machine

• Invented under the name harmonium (Smolensky, 1986)
• Popularized by Hinton and collaborators to Restricted

Boltzmann machine

Restricted Boltzmann machine

• Special case of Boltzmann machine with latent variables:

𝑝 𝑣, ℎ =
exp	(−𝐸 𝑣, ℎ)

𝑍
where the energy function is

𝐸 𝑣, ℎ = −𝑣W𝑊ℎ − 𝑏W𝑣 − 𝑐Wℎ
with the weight matrix 𝑊 and the bias	𝑏, 𝑐

• Partition function
𝑍 =::exp	(−𝐸 𝑣, ℎ)

�

=

�

Z

Restricted Boltzmann machine

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Restricted Boltzmann machine

• Conditional distribution is factorial

𝑝 ℎ|𝑣 =
𝑝(𝑣, ℎ)
𝑝(𝑣)

=i𝑝(ℎj|𝑣)
�

j

and
𝑝 ℎj = 1|𝑣 = 𝜎 𝑐j + 𝑣W𝑊:,j

is logistic function

Restricted Boltzmann machine

• Similarly,
𝑝 𝑣|ℎ =

𝑝(𝑣, ℎ)
𝑝(ℎ)

=i𝑝(𝑣1|ℎ)
�

1

and
𝑝 𝑣1 = 1|ℎ = 𝜎 𝑏1 +𝑊1,:ℎ

is logistic function

Generative Adversarial
Networks (GAN)

See Ian Goodfellow’s tutorial slides:
http://www.iangoodfellow.com/slides/2018-06-22-gan_tutorial.pdf

Generative Adversarial Networks
• Approach: Set up zero-sum game between deep nets to

• Generator: Generate data that looks like training set
• Discriminator: Distinguish between real and synthetic

data

• Motivation:
• Building accurate generative models is hard (e.g.,

learning and sampling from Markov net or Bayes net)
• Want to use all our great progress on supervised

learners to do this unsupervised learning task better
• Deep nets may be our favorite supervised learner,

especially for image data, if nets are convolutional (use
tricks of sliding windows with parameter tying, cross-
entropy transfer function, batch normalization)

Does It Work?

Thanks, Ian Goodfellow, NIPS 2016 Tutorial on GANS, for this and most of
what follows…

A Bit More on GAN Algorithm

The Rest of the Details

• Use deep convolutional neural networks for Discriminator
D and Generator G

• Let x denote trainset and z denote random, uniform input

• Set up zero-sum game by giving D the following
objective, and G the negation of it:

• Let D and G compute their gradients simultaneously,
each make one step in direction of the gradient, and
repeat until neither can make progress… Minimax

More Math on GAN

• Real data distribution 𝑞(𝑥)
• Fake data distribution 𝑝n 𝑥 ≔ [𝑥 = 𝐺n 𝑧 , 𝑧~𝑝 𝑧]
• Discriminator 𝐷 𝑥 ≔ 𝜎(𝑓v 𝑥)

• GAN: 𝑚𝑖𝑛n𝑚𝑎𝑥v𝐸y S log 𝜎(𝑓v 𝑥) +𝐸z{ S log(1 − 𝜎 𝑓v 𝑥)

• Given 𝜃, the optimal 𝑓v∗ 𝑥 = log y(S)
z{(S)

(not necessarily
realizable by the discriminator neural network)

• Plug 𝑓v∗ 𝑥 back in GAN: minn 𝐽𝑆(𝑝n, 𝑞)
• Recall

• Jensen-Shannon divergence 𝐽𝑆 𝑝, 𝑞 = 𝐾𝐿 𝑝|| z�y
.

+ 𝐾𝐿(𝑞|| z�y
.
)

• Kullback-Leibler divergence 𝐾𝐿 𝑝||𝑞 = ∑ 𝑝 𝑥 log z(S)
y(S)

�
S

• Maximum Likelihood Estimate minn 𝐾𝐿(𝑞||𝑝n)

THANK YOU
Some of the slides in these lectures have been adapted/borrowed
from materials developed by Yingyu Liang, Mark Craven, David
Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Matt Gormley,
Elad Hazan, Tom Dietterich, Pedro Domingos, Geoffrey Hinton,

and Ian Goodfellow.

