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Goals for the lecture

you should understand the following concepts
* PAC learnability
« consistent learners and version spaces
« sample complexity
 PAC learnability in the agnostic setting
» the VC dimension
« sample complexity using the VC dimension
« Bias-variance tradeoff



PAC learning

« QOverfitting happens because training error is a poor
estimate of generalization error

— Can we infer something about generalization error
from training error?

« Overfitting happens when the learner doesn'’t see
enough training instances

— Can we estimate how many instances are enough?



Learning setting #1

instance space X

ceC

set of instances X
set of hypotheses (models) H

set of possible target concepts C
unknown probability distribution D over instances



Learning setting #1

 learner is given a set D of training instances ( x, c(x) )
for some target concept c in C

« each instance x is drawn from distribution D
» class label c(x) is provided for each x

» learner outputs hypothesis 4 modeling ¢



True error of a hypothesis ]

the true error of hypothesis A refers to how often # is wrong on future instances
drawn from D

error,(h)=P_, [c(x) 7 h(x)]

instance space X

C h




Training error of a hypothesis )

the training error of hypothesis h refers to how often 4 is wrong on instances in
the training set D

> 5(c(x) # h(x))
error,(h) = P_,[c(x) # h(x)] = %2

D]

Can we bound errory(h) in terms of errorg(h) ?



To say that our learner L has learned a concept, should we require
errorp(h) =0 7?

this is not realistic:

* unless we've seen every possible instance, there may be multiple
hypotheses that are consistent with the training set

» there is some chance our training sample will be unrepresentative



Probably approximately correct learning? @

Instead, we’ll require that
» the error of a learned hypothesis % is bounded by some constant ¢

» the probability of the learner failing to learn an accurate hypothesis is
bounded by a constant o0



Probably Approximately Correct (PAC)
learning (vaiiant, cacm 1984]

» Consider a class C of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H

» Cis PAC learnable by L using H if, for all
ce C
distributions D over X
esuchthat0<e <0.5
o suchthat0<o <0.5
* learner L will, with probability at least (1-0), output a hypothesis h € H
such that errory(h) < € in time that is polynomial in
/¢
1/0
n
size(c)



PAC learning and consistency

» Suppose we can find hypotheses that are consistent with
m training instances.
* We can analyze PAC learnability by determining whether
1. m grows polynomially in the relevant parameters

2. the processing time per training example is
polynomial



Version spaces

» A hypothesis # is consistent with a set of training examples D of
target concept if and only if i4(x) = c¢(x) for each training example
(x,c(x)) inD

consistent(h,D) = (V<x,c(x)> e D) h(x)=c(x)

* The version space VSy p With respect to hypothesis space H and
training set D, is the subset of hypotheses from H consistent with all
training examples in D

VS, p =1h € H | consistent(h,D)}



Exhausting the version space

« The version space VS p is e-exhausted with respect to ¢
and D if every hypothesis h € VS, has true error < ¢

(‘v’h eVs, D)errorp(h) <&



Exhausting the version space

* Suppose that every & in our version space VSypis consistent with m
training examples

« The probability that VS, p is not e-exhausted (i.e. that it contains some
hypotheses that are not accurate enough)

s|H|e_8m

Proof: (1-¢)" probability that some hypothesis with error > ¢
is consistent with m training instances

k(1-¢)" there might be k such hypotheses
|H‘ (1-¢e)" kis bounded by IHI

S|H|€_£m (1-¢)se®whenO=e=<l



Sample complexity for finite hypothesis spaces @

[Blumer et al., Information Processing Letters 1987]

« we want to reduce this probability below 6

|H‘e"€m56

» solving for m we get

1 1
> —| InlH|+ In| —
" 8(n| + n((s)j

log dependence on H & ¢ has stronger influence than o



PAC analysis example:
learning conjunctions of Boolean literals

e each instance has n Boolean features
* learned hypotheses are of the form Y = X, A X, A =X

How many training examples suffice to ensure that with prob = 0.99, a
consistent learner will return a hypothesis with error < 0.05 ?

there are 3" hypotheses (each variable can be present and unnegated, present
and negated, or absent) in H

m2é(ln(3”)+ln(0ilj)

for n=10, m =312 for n=100, m = 2290



PAC analysis example:
learning conjunctions of Boolean literals

« we've shown that the sample complexity is polynomial in relevant
parameters: 1/e, 1/0, n

« to prove that Boolean conjunctions are PAC learnable, need to also

show that we can find a consistent hypothesis in polynomial time (the
FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:
initialize h to the most specific hypothesis x; A =x; A x,/A\=x ... x,/\ —x,
for each positive training instance x

remove from & any literal that is not satisfied by x
output hypothesis &



PAC analysis example:
learning decision trees of depth 2

« each instance has n Boolean features

» learned hypotheses are DTs of depth 2
using only 2 variables

/\

X

/N

1

0

| |

H| = ( ; ]x16 2D 6= 8n(n—1)

TN

# possible split choices # possible leaf labelings




PAC analysis example:
learning decision trees of depth 2

« each instance has n Boolean features

» learned hypotheses are DTs of depth 2
using only 2 variables /\

How many training examples suffice to ensure that with prob = 0.99, a
consistent learner will return a hypothesis with error < 0.05 ?

m > L ln(8n2 — 8n)+ln(ij
05 01

for n=10, m = 224 for n=100,m =318



PAC analysis example:
K-term DNF is not PAC learnable

« each instance has n Boolean features

» learned hypotheses are of the form y — TvT,v..vT, where
each T; is a conjunction of n Boolean features or their negations

|HI < 3% | so sample complexity is polynomial in the relevant parameters

m 2 l(nk In(3)+ ln(l)j
€ )

however, the computational complexity (time to find consistent 4) is not
polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be
reduced to learning 3-term DNF)



What if the target concept is not in our
hypothesis space?

* so far, we've been assuming that the target concept c is in our
hypothesis space; this is not a very realistic assumption

« agnostic learning setting
« don'tassume c € H

. Iccleq[rner returns hypothesis / that makes fewest errors on training
ata



Hoeffding bound

* we can approach the agnostic setting by using the Hoeffding bound

 let Z,...Z,, be a sequence of m independent Bernoulli trials (e.g. coin
flips), each with probability of success E[Z;] = p

cletS=27,+ -+ 27y,

2

P[S< (p—e)m] < e ?2m¢



Agnostic PAC learning (]

 applying the Hoeffding bound to characterize the error rate of a given
hypothesis

Plerrorp(h) > errorp(h) + ¢| < p—2me?
* but our learner searches hypothesis space to find hy;

P[errorp(hbest) > errorp(hpese) + e] < |H|e~2me*

» solving for the sample complexity when this probability is limited to §

> 1 In|H| + 1 (1)
M=o\ "5



What if the hypothesis space is not finite?

* Q: If H is infinite (e.g. the class of perceptrons), what measure of
hypothesis-space complexity can we use in place of |HI ?

* A: the largest subset of X for which H can guarantee zero training
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

o



Shattering and the VC dimension

a set of instances D is shattered by a hypothesis space H iff for
every dichotomy of D there is a hypothesis in H consistent with
this dichotomy

the VC dimension of H is the size of the largest set of instances
that is shattered by H



Infinite hypothesis space with a finite VC dimension@

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an & consistent with 1 instance ~ ¢an find an / consistent with 2
no matter how it’s labeled instances no matter labeling
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Infinite hypothesis space with a finite VC dimension@

consider: H is set of lines in 2D

can find an & consistent with 3
instances no matter labeling (assuming

they’re not colinear)

cannot find an & consistent with 4
instances for some labelings

ONNG
SN

can shatter 3 instances, but not 4, so the VC-dim(H) = 3
more generally, the VC-dim of hyperplanes in n dimensions = n+1



VC dimension for finite hypothesis spaces @

for finite H, VC-dim(H) < log,|HI

Proof:
suppose VC-dim(H) =d
for d instances, 24 different labelings possible
therefore H must be able to represent 2¢ hypotheses
24 < |H|
d =VC-dim(H) < log,|HI



Sample complexity and the VC dimension@

 using VC-dim(H) as a measure of complexity of H, we can derive the
following bound [Blumer et al., JACM 1989]

m 2 l(410g2 (%) +8VC-dim(H )log, (%D

E

m grows log x linear in ¢ (better than earlier bound)

can be used for both finite and infinite hypothesis spaces



Lower bound on sample complexity @

[Ehrenfeucht et al., Information & Computation 1989]

* there exists a distribution D and target concept in C such that if the
number of training instances given to L

1 ( 1 j VC-dim(C) -1
m <max| —log :
£ 32¢€

)

then with probability at least 6, L outputs # such that errorp(h) > ¢



Comments on PAC learning

« PAC analysis formalizes the learning task and allows for non-perfect
learning (indicated by e and 0)

» finding a consistent hypothesis is sometimes easier for larger
concept classes
* e.g. although k-term DNF is not PAC learnable, the more general
class k-CNF is
* PAC analysis has been extended to explore a wide range of cases
* noisy training data
* learner allowed to ask queries
» restricted distributions (e.g. uniform) over D
* etc.

* most analyses are worst case
« sample complexity bounds are generally not tight



The bias-variance decomposition @

« How will predictive accuracy (error) change as we vary k in
k-NN?

* Or as we vary the complexity of our decision trees?

* the bias/variance decomposition of error can lend some
iInsight into these questions

L note that this is a different sense of bias

than in the term inductive bias



Background: Expected values

» the expected value of a random variable that takes on
numerical values is defined as:

= Zx P(x)
this is the same thing as the mean

« we can also talk about the expected value of a function
of a random variable

Elg(X)]= Zg(X)P(X)



Defining bias and variance @

« consider the task of learning a regression model f(x; D)

given a training set D = {(x(”,y(”),...,(x(m),y(m))} /

indicates the

« a natural measure of the error of f is dependency of

model on D
b [(y - f(x; D)) | D]

where the expectation is taken with respect to the
real-world distribution of instances



Defining bias and variance @

* this can be rewritten as:

E[(y — f(x; D))’ Ix, D] = E[(y — E[ylx])’ Ix, D]
+(f(x; D)= E[y 1 x])’ \

ertor of 25 2 pfediw docan't depend on Dorf



Defining bias and variance

* now consider the expectation (over different data sets D) for the
second term

E, [(f(x; D)—Ely |x])2] =
(Ep[f(x: D)~ E[y1x]) bias

+ L) [(f(x; D)-E,[f(x; D)])z] variance

» Dbias: if on average f (x; D) differs from E [y | x] then f (x; D) is a biased
estimator of E [y | x]

« variance: f(x; D) may be sensitive to D and vary a lot from its
expected value



Bias/variance for polynomial interpolation@

the 1st order
polynomial has high
bias, low variance

50t order polynomial
has low bias, high
variance

4t order polynomial
represents a good
trade-off

05

true model
O observations
-------- interpolation
polynomials models:
50th order
4th order
_— 1st order




Bias/variance trade-off for k-NN regressioff)

« consider using k-NN regression to learn a model of this
surface in a 2-dimensional feature space

wawow



Bias/variance trade-off for k-NN regressiof

bias for 1-NN darker pixels
correspond to

higher values

A

bias for 10-NN

h -

variance for 10-NN



Bias/variance trade-off

« consider k-NN applied
to digit recognition
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Bias/variance discussion @

* predictive error has two controllable components

« expressive/flexible learners reduce bias, but increase
variance

« for many learners we can trade-off these two components
(e.g. via our selection of k in k-NN)

* the optimal point in this trade-off depends on the particular
problem domain and training set size

* this is not necessarily a strict trade-off; e.g. with ensembles
we can often reduce bias and/or variance without increasing
the other term



Bias/variance discussion

the bias/variance analysis

* helps explain why simple learners can outperform more
complex ones

* helps understand and avoid overfitting



THANK YOU

Some of the slides in these lectures have been adapted/b.orrowed
from materials developed by Yingyu Liang, Mark Crawen, David

@I’) Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom
\‘-‘

-

Di%’[terich, and Pedro Domingos.
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