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Goals for Part 1

you should understand the following concepts
• the Bayesian network representation
• inference by enumeration
• the parameter learning task for Bayes nets
• the structure learning task for Bayes nets
• maximum likelihood estimation
• Laplace estimates
• m-estimates



Bayesian network example

• Consider the following 5 binary random variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

• Suppose we want to answer queries like what is       
P(B | M, J) ?  



Bayesian network example

Burglary Earthquake

Alarm

JohnCalls MaryCalls

B E t f

t t 0.95 0.05

t f 0.94 0.06

f t 0.29 0.71

f f 0.001 0.999

P ( A | B, E )

t f

0.001 0.999

P ( B )
t f

0.001 0.999

P ( E )

A t f

t 0.9 0.1

f 0.05 0.95

P ( J | A)
A t f

t 0.7 0.3

f 0.01 0.99

P ( M | A)



Bayesian network example

Burglary Earthquake

Alarm

JohnCalls MaryCalls

B E t f

t t 0.9 0.1

t f 0.8 0.2

f t 0.3 0.7

f f 0.1 0.9

P ( A | B, E )

t f

0.1 0.9

P ( B )
t f

0.2 0.8

P ( E )

A t f

t 0.9 0.1

f 0.2 0.8

P ( J | A)
A t f

t 0.7 0.3

f 0.1 0.9

P ( M | A)



Bayesian networks

• a BN consists of a Directed Acyclic Graph (DAG) and a set 
of conditional probability distributions

• in the DAG
• each node denotes random a variable
• each edge from X to Y represents that X directly 

influences Y
• formally: each variable X is independent of its non-

descendants given its parents

• each node X has a conditional probability distribution 
(CPD) representing P(X | Parents(X) )



Bayesian networks

• a BN provides a compact representation of a joint 
probability distribution

• using the chain rule, a joint probability distribution can be 
expressed as
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Bayesian networks

• a standard representation of the joint distribution  for the 
Alarm example has 25 = 32 parameters

• the BN representation of this distribution has 20 parameters
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Bayesian networks
• consider a case with 10 binary random variables

• How many parameters does a BN with the following 
graph structure have?

• How many parameters does the standard table 
representation of the joint distribution have?
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Advantages of Bayesian network representation

• Captures independence and conditional independence 
where they exist

• Encodes the relevant portion of the full joint among 
variables where dependencies exist

• Uses a graphical representation which lends insight into 
the complexity of inference



The inference task in Bayesian networks

Given: values for some variables in the network (evidence),
and a set of query variables
Do:  compute the posterior distribution over the query 

variables

• variables that are neither evidence variables nor query 
variables are hidden variables

• the BN representation is flexible enough that any set can 
be the evidence variables and any set can be the query 
variables



Inference by enumeration

A

B E

MJ

• let a denote A=true, and ¬a denote A=false
• suppose we’re given the query: P(b | j, m)

“probability the house is being burglarized given that John 
and Mary both called”

• from the graph structure we can first compute:

sum over possible
values for E and A
variables (e, ¬e, a, ¬a)
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Inference by enumeration

B E P(A)

t t 0.95

t f 0.94

f t 0.29

f f 0.00
1

P(B)

0.001

P(E)

0.001

A P(J)

t 0.9

f 0.05

A P(M)

t 0.7

f 0.01

e, a

e, ¬a

¬e, a

¬ e, ¬ a

B E A J M

A
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• now do equivalent calculation for P(¬b,  j, m)
• and determine P(b | j, m)

Inference by enumeration
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Comments on BN inference
• inference by enumeration is an exact method (i.e. it computes the exact 

answer to a given query)

• it requires summing over a joint distribution whose size is exponential in 
the number of variables

• in many cases we can do exact inference efficiently in large networks

• key insight: save computation by pushing sums inward

• in general, the Bayes net inference problem is NP-hard

• there are also methods for approximate inference – these get an 
answer which is “close”

• in general, the approximate inference problem is NP-hard also, but 
approximate methods work well for many real-world problems



The parameter learning task

• Given: a set of training instances, the graph structure of a BN

• Do: infer the parameters of the CPDs

B E A J M

f f f t f
f t f f f
f f t f t

…

Burglary Earthquake

Alarm

JohnCalls MaryCalls



The structure learning task

• Given: a set of training instances

• Do: infer the graph structure (and perhaps the parameters 
of the CPDs too)

B E A J M

f f f t f
f t f f f
f f t f t

…



Parameter learning and MLE

• maximum likelihood estimation (MLE)
• given a model structure (e.g. a Bayes net graph) G

and a set of data D
• set the model parameters θ to maximize P(D | G, θ)

• i.e. make the data D look as likely as possible under the 
model P(D | G, θ)



Maximum likelihood estimation

x = 1,1,1,0,1,0,0,1,0,1{ }

consider trying to estimate the parameter θ (probability of heads) of a 
biased coin from a sequence of flips

for h heads in n flips
the MLE is h/n

 

L(θ : x1,…, xn ) = θ x1 (1−θ )1−x1!θ xn (1−θ )1−xn

                      = θ xi∑ (1−θ )n− xi∑

the likelihood function for θ is given by:



MLE in a Bayes net

independent parameter learning
problem for each CPD
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Maximum likelihood estimation

B E A J M
f f f t f
f t f f f
f f f t t
t f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A

B E

MJ

now consider estimating the CPD parameters for B and J in the alarm
network given the following data set
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Maximum likelihood estimation

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A

B E

MJ

suppose instead, our data set was this…

do we really want to 
set this to 0?

1
8
8)(

0
8
0)(

==¬

==

bP

bP



Maximum a posteriori (MAP) estimation

• instead of estimating parameters strictly from the data, 
we could start with some prior belief for each

• for example, we could use Laplace estimates

• where nv represents the number of occurrences of 
value v
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a more general form: m-estimates

P(X = x) = nx + pxm

nv
v∈ Values(X )
∑⎛

⎝⎜
⎞

⎠⎟
+m number of  “virtual” instances

prior probability of value x

Maximum a posteriori (MAP) estimation



M-estimates example

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A

B E

MJ

now let’s estimate parameters for B using m=4 and pb=0.25
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Goals for Part 2

you should understand the following concepts
• missing data in machine learning

• hidden variables
• missing at random
• missing systematically

• the EM approach to imputing missing values in Bayes net parameter 
learning

• the Chow-Liu algorithm for structure search



Missing data
• Commonly in machine learning tasks, some feature values are missing

• some variables may not be observable (i.e. hidden) even for training instances

• values for some variables may be missing at random: what caused the data to 
be missing does not depend on the missing data itself
• e.g. someone accidentally skips a question on an questionnaire
• e.g. a sensor fails to record a value due to a power blip

• values for some variables may be missing systematically: the probability of 
value being missing depends on the value
• e.g. a medical test result is missing because a doctor was fairly sure of a 

diagnosis given earlier test results
• e.g. the graded exams that go missing on the way home from school are 

those with poor scores



Missing data

• hidden variables; values missing at random
• these are the cases we’ll focus on
• one solution: try impute the values

• values  missing systematically
• may be sensible to represent “missing” as an explicit feature value



Imputing missing data with EM

Given:
• data set with some missing values
• model structure, initial model parameters

Repeat until convergence
• Expectation (E) step: using current model, compute 

expectation over missing values
• Maximization (M) step: update model parameters with 

those that maximize probability of the data (MLE or MAP) 



Example: EM for parameter learning

B E A J M
f f ? f f
f f ? t f
t f ? t t
f f ? f t
f t ? t f
f f ? f t
t t ? t t
f f ? f f
f f ? t f
f f ? f t

A

B E

MJ

B E P(A)

t t 0.9

t f 0.6

f t 0.3

f f 0.2

P(B)

0.1

P(E)

0.2 

A P(J)

t 0.9

f 0.2

A P(M)

t 0.8

f 0.1

suppose we’re given the following initial BN and training set



Example: E-step
B E A J M

f f t: 0.0069
f: 0.9931

f f

f f t:0.2
f:0.8

t f

t f t:0.98
f: 0.02

t t

f f t: 0.2
f: 0.8

f t

f t t: 0.3
f: 0.7

t f

f f t:0.2
f: 0.8

f t

t t t: 0.997
f: 0.003

t t

f f t: 0.0069
f: 0.9931

f f

f f t:0.2
f: 0.8

t f

f f t: 0.2
f: 0.8

f t

A

B E

MJ

B E P(A)

t t 0.9

t f 0.6

f t 0.3

f f 0.2

P(B)

0.1

P(E)

0.2 

A P(J)

t 0.9

f 0.2

A P(M)

t 0.8

f 0.1
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t t 0.9

t f 0.6

f t 0.3

f f 0.2
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0.1
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0.2 

A P(J)
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Example: E-step



B E A J M

f f t: 0.0069
f: 0.9931

f f

f f t:0.2
f:0.8

t f

t f t:0.98
f: 0.02

t t

f f t: 0.2
f: 0.8

f t

f t t: 0.3
f: 0.7

t f

f f t:0.2
f: 0.8

f t

t t t: 0.997
f: 0.003

t t

f f t: 0.0069
f: 0.9931

f f

f f t:0.2
f: 0.8

t f

f f t: 0.2
f: 0.8

f t

A

B E

MJ

re-estimate probabilities
using expected counts

B E P(A)
t t 0.997

t f 0.98

f t 0.3

f f 0.145

re-estimate probabilities for 
P(J | A) and P(M | A) in same way
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B E A J M

f f t: 0.0069
f: 0.9931

f f

f f t:0.2
f:0.8

t f

t f t:0.98
f: 0.02

t t

f f t: 0.2
f: 0.8

f t

f t t: 0.3
f: 0.7

t f

f f t:0.2
f: 0.8

f t

t t t: 0.997
f: 0.003

t t

f f t: 0.0069
f: 0.9931

f f

f f t:0.2
f: 0.8

t f

f f t: 0.2
f: 0.8

f t
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Example: M-step



Convergence of EM

• E and M steps are iterated until probabilities 
converge

• will converge to a maximum in the data likelihood 
(MLE or MAP)

• the maximum may be a local optimum, however
• the optimum found depends on starting conditions 

(initial estimated probability parameters)



Learning structure + parameters

• number of structures is superexponential in the number of 
variables

• finding optimal structure is NP-complete problem
• two common options:

• search very restricted space of possible structures  
(e.g. networks with tree DAGs)

• use heuristic search (e.g. sparse candidate)



The Chow-Liu algorithm

• learns a BN with a tree structure that maximizes the 
likelihood of the training data

• algorithm
1. compute weight I(Xi, Xj) of each possible edge (Xi, Xj)
2. find maximum weight spanning tree (MST)
3. assign edge directions in MST



1. use mutual information to calculate edge weights
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The Chow-Liu algorithm



2. find maximum weight spanning tree: a maximal-weight 
tree that connects all vertices in a graph

A

B

C

D E

F G

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

The Chow-Liu algorithm

The Chow-Liu algo always have a complete graph, but here 
we use a non-complete graph as the example for clarity. 



Prim’s algorithm for finding an MST

given: graph with vertices V and edges E

Vnew ← { v }  where v is an arbitrary vertex from V
Enew ← { } 
repeat until Vnew = V
{

choose an edge (u, v) in E with max weight where u is in Vnew and v is not
add v to Vnew and (u, v) to  Enew

}
return Vnew and Enew which represent an MST



Kruskal’s algorithm for finding an MST

given: graph with vertices V and edges E

Enew ← { } 
for each (u, v) in E ordered by weight (from high to low)
{

remove (u, v) from E
if adding (u, v) to Enew does not create a cycle

add (u, v) to  Enew

}
return V and Enew which represent an MST



Finding MST in Chow-Liu
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Finding MST in Chow-Liu
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Returning directed graph in Chow-Liu

A

B

C

D E

F G

A

B

C

D E

F G

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

3. pick a node for the root, and assign edge directions



The Chow-Liu algorithm

• How do we know that Chow-Liu will find a tree that 
maximizes the data likelihood?

• Two key questions:
• Why can we represent data likelihood as sum of I(X;Y)

over edges?
• Why can we pick any direction for edges in the tree?



Why Chow-Liu maximizes likelihood (for a tree)

data likelihood given directed edges

we’re interested in finding the graph G that maximizes this

if we assume a tree, each node has at most one parent

I(Xi ,Xj ) = I(Xj ,Xi )
edge directions don’t matter for likelihood, because MI is symmetric
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Goals for Part 3
you should understand the following concepts

• structure learning as search
• Kullback-Leibler divergence
• the Sparse Candidate algorithm

• the Tree Augmented Network (TAN) algorithm



Heuristic search for structure learning

• each state in the search space represents a DAG Bayes
net structure

• to instantiate a search approach, we need to specify
• scoring function
• state transition operators
• search algorithm



Scoring function decomposability

• when the appropriate priors are used, and all instances 
in D are complete, the scoring function can be 
decomposed as follows

• thus we can
– score a network by summing terms over the nodes in 

the network

– efficiently score changes in a local search procedure
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Scoring functions for structure learning

• Can we find a good structure just by trying to maximize the 
likelihood of the data?

• If we have a strong restriction on the the structures allowed 
(e.g. a tree), then maybe.

• Otherwise, no!  Adding an edge will never decrease 
likelihood.  Overfitting likely.
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• there are many different scoring functions for BN structure 
search

• one general approach

complexity penalty

Akaike Information Criterion (AIC): f (m) = 1

Bayesian Information Criterion (BIC): f (m) = 1
2
log(m)
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Scoring functions for structure learning



Structure search operators

A

B C

D

A

B C

D

add an edge

A

B C

D

reverse an edge

given the current network
at some stage of the search, 
we can…

A

B C

D

delete an edge



Bayesian network search: hill-climbing

given: data set D, initial network B0

i = 0
Bbest ←B0
while stopping criteria not met
{

for each possible operator application a
{

Bnew ← apply(a, Bi)
if score(Bnew) > score(Bbest)

Bbest ← Bnew
}
++i
Bi ← Bbest

}
return Bi



Bayesian network search: the Sparse 
Candidate algorithm [Friedman et al., UAI 1999]

given: data set D, initial network B0, parameter k

i = 0
repeat
{

++i

// restrict step
select for each variable Xj a set Cj

i of candidate parents (|Cj
i| ≤ k)

// maximize step
find network Bi maximizing score among networks where           ∀Xj, 
Parents(Xj) ⊆Cj

i

} until convergence
return Bi



• to identify candidate parents in the first iteration, can compute 
the  mutual information between pairs of variables

The restrict step in Sparse Candidate
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• Suppose:

we’re selecting two candidate parents for 
A, and   I(A, C) > I(A, D) > I(A, B)

• with mutual information, the candidate 
parents for A would be C and D

• how could we get B as a candidate parent?

A

B C

D

A

D C

The restrict step in Sparse Candidate

A

B C

D

true distribution current network



• mutual information can be thought of as the KL 
divergence between  the distributions

• Kullback-Leibler (KL) divergence provides a distance 
measure between two distributions, P and Q

P(X,Y )

P(X)P(Y ) (assumes X and Y are independent)
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• we can use KL to assess the discrepancy between the 
network’s Pnet(X, Y) and the empirical P(X, Y) 

M (X,Y ) = DKL (P(X,Y )) || Pnet (X,Y ))

A

B C

D

true distribution current Bayes net

DKL (P(A,B)) || Pnet (A,B))

The restrict step in Sparse Candidate

• can estimate Pnet(X, Y) by sampling from the network (i.e. 
using it to generate instances)

A

B C

D

The restrict step in Sparse Candidate



given: data set D, current network Bi, parameter k

for each variable Xj

{
calculate M(Xj , Xl ) for all Xj ≠ Xl such that Xl ∉ Parents(Xj)

choose highest ranking  X1 ... Xk-s where s= | Parents(Xj) |

// include current parents in candidate set to ensure monotonic
// improvement in scoring function
Cj

i =Parents(Xj) ∪ X1 ... Xk-s

} 
return { Cj

i } for all Xj

The restrict step in Sparse Candidate



The maximize step in Sparse Candidate

• hill-climbing search with add-edge, delete-edge,  reverse-
edge operators 

• test to ensure that cycles aren’t introduced into the graph



Efficiency of Sparse Candidate

possible parent 
sets for each node

changes scored on 
first iteration of 
search

changes scored on 
subsequent 
iterations

ordinary greedy 
search

greedy search w/at 
most k parents

Sparse Candidate ( )kO 2

( )nO 2 ( )2nO

( )knO

( )nO
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n = number of variables

after we apply an operator, the scores will change only for edges 
from the parents of the node with the new impinging edge

÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ
k
n

O ( )2nO ( )nO



Bayes nets for classification

• the learning methods for BNs we’ve discussed so far can be 
thought of as being unsupervised

• the learned models are not constructed to predict the 
value of a special class variable

• instead, they can predict values for arbitrarily selected 
query variables

• now let’s consider BN learning for a standard supervised 
task (learn a model to predict Y given X1 … Xn )



Naïve Bayes
• one very simple BN approach for supervised tasks is naïve Bayes
• in naïve Bayes, we assume that all features Xi are conditionally 

independent given the class Y
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Naïve Bayes

Learning
• estimate P(Y = y) for each value of the class variable Y
• estimate P(Xi =x | Y = y) for each Xi

XnXn-1X2X1

Y

Classification: use Bayes’ Rule
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Naïve Bayes vs. BNs learned with an 
unsupervised structure search

test-set error on 25
classification data sets from 
the UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997



The Tree Augmented Network (TAN) algorithm
[Friedman et al., Machine Learning 1997]

• learns a tree structure to augment the edges of a naïve 
Bayes network

• algorithm
1. compute weight I(Xi, Xj | Y) for each possible edge 

(Xi, Xj) between features
2. find maximum weight spanning tree (MST) for graph 

over X1 … Xn

3. assign edge directions in MST
4. construct a TAN model by adding node for Y and an 

edge from Y to each Xi



Conditional mutual information in TAN

conditional mutual information is used to calculate edge weights

“how much information Xi provides about Xj when the value of Y is known”
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Example TAN network
class variable

naïve Bayes edges

edges determined by MST 

Y



TAN vs. Chow-Liu

• TAN is focused on learning a Bayes net specifically for 
classification problems

• the MST includes only the feature variables (the class 
variable is used only for calculating edge weights)

• conditional mutual information is used instead of mutual 
information in determining edge weights in the undirected 
graph

• the directed graph determined from the MST is added to 
the Y → Xi edges that are in a naïve Bayes network



TAN vs. Naïve Bayes

test-set error on 25
data sets from the
UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997



Comments on Bayesian networks

• the BN representation has many advantages
• easy to encode domain knowledge (direct dependencies, 

causality)
• can represent uncertainty
• principled methods for dealing with missing values
• can answer arbitrary queries (in theory; in practice may be 

intractable)

• for supervised tasks, it may be advantageous to use a learning 
approach (e.g. TAN) that focuses on the dependencies that are most 
important

• although very simplistic, naïve Bayes often learns highly accurate 
models

• BNs are one instance of a more general class of probabilistic 
graphical models



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 
from materials developed by Yingyu Liang, Mark Craven, David 

Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom 
Dietterich, and Pedro Domingos. 


