

Graph Based Malware Analysis Using NLP Approaches

Chao Xie

Department of Computer Science
University of Wisconsin-Madison, USA

Email: cxie@cs.wisc.edu

Abstract
An increasing prevalence of attacks and intrusions has
accompanied the continued growth and diversification of the
Internet. Traditional malicious code detection technologies
that based on byte- or instruction-level signatures fail to
detect modern malicious code due to advanced software
obfuscation technologies. In the project, we use graph based
approaches to discover the internal structural characteristics
of malicious code and adopt graph mining techniques to
find the frequent graph patterns. We build the feature
vectors using above graph patterns and apply Naive Bayes
and SVM to classify these vectors in a vector space.

Introduction
The continued growth and diversification of the Internet is
accompanied by the increasing prevalence of attacks and
intrusions. There is a significant change in motivation for
malicious activity has taken place over the past several
years: from vandalism and recognition in the hacker
community, to attacks and intrusions for financial gain.
Malware, which is software for malicious attacks and
intrusions, has also evolved a great deal. The evolution of
malware can be seen both in terms of variants of existing
tools and in the relatively frequent emergence of
completely new codebases.
 Most of the malware samples received daily at anti-virus
laboratories are variants of previously seen samples.
Malware authors develop huge numbers of variants as a
way to bypass anti-virus signatures and saturate the anti-
virus labs. These new samples share the same code with
minor differences, so if we were able to analyze them
focusing on their internal structure, identifying the shared
code between them, we could group members of the same
family together and therefore automatically identify and
classify new samples received. Previous research to
identify changes among similar pieces of code has been
focused on byte- or instruction-level comparison. Although
this approach has worked in the past, nowadays it is not
effective any more because of aggressive compiler
optimizations, instruction reordering, modifications in
register allocation, branch inversion, obfuscation methods
etc.
 Representing code as graphs provides an abstraction that
allows us to identify pieces of code shared between

binaries, or with minor changes, without having to match
instructions as a sequence of lines and applying a
sequence-comparison algorithm. In the project, we use
graph based approaches to discover the internal structural
characteristics of malicious code and adopt graph mining
techniques to find the frequent graph patterns. We build the
feature vectors using above graph patterns. Then we apply
Naive Bayes and SVM to train the malicious code
classifier.

System Architecture
Figure 1 illustrates our system architecture. In the
following, we will introduce each component of the system
in details.

Binary Unpacking
Unpacking is an indispensable pre-processing step for
binary code analysis. Packers and executable protectors are
often used to automatically add several layers of protection
to malware executables. Recent packers and protectors also
incorporate API obfuscations that make it hard for
analyzers to identify system calls or calls to Windows
APIs.
 We use the Eureka binary unpacking system to pre-
process the executables. Eureka adopts both heuristics-
based unpacking and statistics-based unpacking and is very
effective.

Static Analysis and Call Graph

Figure 1: System Architecture

Executables could be represented as call graphs, which is a
collection of nodes connected by a group of edges, where
the nodes represent the disassembly of the functions and
the edges represent the relations (function calls) among
these functions. For example, an edge from f1 to f2 implies
that f1 contains a function call to f2 but not vice versa. A
example of call graph is given in Figure 2.

The functions in a program can be classified into three
categories, which are represented by different colors in
Figure 2. The cyan-colored nodes represent the statically-
linked library functions, which are library functions
statically linked into the final distributed binary, such as
Libc and MFC. The pink nodes represent the dynamically-
imported functions that are linked at run time, e.g.,
windows DLL functions. The green nodes represent the
local functions that are written by software authors.
 To extract call graphs, we employ the IDA-Pro
disassembler to disassemble the unpacked executables.
Import and library functions are standard routines, so their
names are consistent throughout all the programs. We are
use the function name as their node label in the call graph.
However, for local functions, their names are in general
unavailable because most executables do not come with
their symbol table. We use two different approaches to get
the label of the local function nodes.

Bag of Word Presentation (BWP). Each local function
consists of a sequence of assembly instructions. We treat
each instruction, such as xor and push, as a “word type”
and count its occurrence. By this way, we can build a
unigram vector for each local function and use it as the
label.
High Level Function Only (HLFO). We assign a unique
label to all the local function nodes. By this way, we treat

omit the difference between local functions and only
concentrate on high level Import and library functions.

Frequent Graph Pattern Mining
Because a call graph represents the internal structure of an
executable, we can suppose that malware samples in the
same family should generate similar graphs, or there exists
at least graph isomorphism at certain level. Moreover,
there could be certain patterns shared by malware samples
of the same family. We can suppose that these patterns are
preserved in the graphs and use the famous gSpan graph
mining algorithm to discover the frequent graph patterns.

Malware Classification
We transform each call graph into a feature vector x = {x1,
x2, …, xn}, where xi=1 if the i-th pattern is contained in that
graph; otherwise, xi=0. Each vector is associated with a
class label y, where y=1 if the executable is malicious and
y=0 if it is benign. Then we apply Naive Bayes and SVM
to classify these vectors in a vector space.

Experiment and Results
We used 1000 malicious executables and 1000 benign
executables for the experiment and used 10-fold cross
validation.
 The confusion matrices of the classification are given
below.

Table 1: Confusion Matrix Using Bag of Word
Presentation

 Predicted
(Naive Bayes)

Predicted
(SVM)

 Mal Benign Mal Benign
Mal 719 267 Mal 712 296

Actual

Benign 281 733 Benign 288 704

Table 2: Confusion Matrix Using High Level Function
Only

 Predicted
(Naive Bayes)

Predicted
(SVM)

 Mal Benign Mal Benign
Mal 782 243 Mal 751 262

Actual

Benign 218 757 Benign 249 738
 We can see that Naive Bayes achieves slightly better
results in this malware classification task. We also observe
that BWP will result in a better classification than HLFO.
This may be because of that graphs and feature vectors
based on the low-level assembly instructions potentially
bring a lot of noise or chaos. However, the accuracy of the
malware classification is not desirable at all. We plan to
integrate other feature with structure feature to for future
improvement.

Figure 2: A call graph example

Figure 3: Instruction sequence in function “start”

References
Realms, S. Armadillo protector. http://www.woodmann.co
m/crackz/Packers.htm#armadillo.
Sharif M., Yegneswaran, V., Saidi, H., Porras, P.A. and
Lee, W., Eureka: A Framework for Enabling Static
Malware Analysis, in Proceedings of the 13th European
Symposium on Research in Computer Security, Malaga,
Spain, October 2008.
Hex-rays. The IDA Pro Disassembler and Debugger.
http://www.hexrays.com/idapro/, 2008.
Yan, X., and Han, J. gSpan: Graph-Based Substructure
Pattern Mining, in Proceedings of the 2002 IEEE
International Conference on Data Mining.

