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Abstract 
An increasing prevalence of attacks and intrusions has 
accompanied the continued growth and diversification of the 
Internet. Traditional malicious code detection technologies 
that based on byte- or instruction-level signatures fail to 
detect modern malicious code due to advanced software 
obfuscation technologies. In the project, we use graph based 
approaches to discover the internal structural characteristics 
of malicious code and adopt graph mining techniques to 
find the frequent graph patterns. We build the feature 
vectors using above graph patterns and apply Naive Bayes 
and SVM to classify these vectors in a vector space. 

Introduction  
The continued growth and diversification of the Internet is 
accompanied by the increasing prevalence of attacks and 
intrusions. There is a significant change in motivation for 
malicious activity has taken place over the past several 
years: from vandalism and recognition in the hacker 
community, to attacks and intrusions for financial gain. 
Malware, which is software for malicious attacks and 
intrusions, has also evolved a great deal. The evolution of 
malware can be seen both in terms of variants of existing 
tools and in the relatively frequent emergence of 
completely new codebases.  
 Most of the malware samples received daily at anti-virus 
laboratories are variants of previously seen samples. 
Malware authors develop huge numbers of variants as a 
way to bypass anti-virus signatures and saturate the anti-
virus labs. These new samples share the same code with 
minor differences, so if we were able to analyze them 
focusing on their internal structure, identifying the shared 
code between them, we could group members of the same 
family together and therefore automatically identify and 
classify new samples received. Previous research to 
identify changes among similar pieces of code has been 
focused on byte- or instruction-level comparison. Although 
this approach has worked in the past, nowadays it is not 
effective any more because of aggressive compiler 
optimizations, instruction reordering, modifications in 
register allocation, branch inversion, obfuscation methods 
etc.  
 Representing code as graphs provides an abstraction that 
allows us to identify pieces of code shared between 

binaries, or with minor changes, without having to match 
instructions as a sequence of lines and applying a 
sequence-comparison algorithm. In the project, we use 
graph based approaches to discover the internal structural 
characteristics of malicious code and adopt graph mining 
techniques to find the frequent graph patterns. We build the 
feature vectors using above graph patterns. Then we apply 
Naive Bayes and SVM to train the malicious code 
classifier. 

System Architecture 
Figure 1 illustrates our system architecture. In the 
following, we will introduce each component of the system 
in details.  

Binary Unpacking 
Unpacking is an indispensable pre-processing step for 
binary code analysis. Packers and executable protectors are 
often used to automatically add several layers of protection 
to malware executables. Recent packers and protectors also 
incorporate API obfuscations that make it hard for 
analyzers to identify system calls or calls to Windows 
APIs.  
 We use the Eureka binary unpacking system to pre-
process the executables. Eureka adopts both heuristics-
based unpacking and statistics-based unpacking and is very 
effective.    
 
Static Analysis and Call Graph 

Figure 1: System Architecture 



Executables could be represented as call graphs, which is a 
collection of nodes connected by a group of edges, where 
the nodes represent the disassembly of the functions and 
the edges represent the relations (function calls) among 
these functions. For example, an edge from f1 to f2 implies 
that f1 contains a function call to f2 but not vice versa. A 
example of call graph is given in Figure 2.  

The functions in a program can be classified into three 
categories, which are represented by different colors in 
Figure 2. The cyan-colored nodes represent the statically-
linked library functions, which are library functions 
statically linked into the final distributed binary, such as 
Libc and MFC. The pink nodes represent the dynamically-
imported functions that are linked at run time, e.g., 
windows DLL functions. The green nodes represent the 
local functions that are written by software authors.  
 To extract call graphs, we employ the IDA-Pro 
disassembler to disassemble the unpacked executables. 
Import and library functions are standard routines, so their 
names are consistent throughout all the programs. We are 
use the function name as their node label in the call graph. 
However, for local functions, their names are in general 
unavailable because most executables do not come with 
their symbol table. We use two different approaches to get 
the label of the local function nodes.  

Bag of Word Presentation (BWP). Each local function 
consists of a sequence of assembly instructions. We treat 
each instruction, such as xor and push, as a “word type” 
and count its occurrence. By this way, we can build a 
unigram vector for each local function and use it as the 
label. 
High Level Function Only (HLFO). We assign a unique 
label to all the local function nodes. By this way, we treat 

omit the difference between local functions and only 
concentrate on high level Import and library functions.  
 
Frequent Graph Pattern Mining 
Because a call graph represents the internal structure of an 
executable, we can suppose that malware samples in the 
same family should generate similar graphs, or there exists 
at least graph isomorphism at certain level. Moreover, 
there could be certain patterns shared by malware samples 
of the same family. We can suppose that these patterns are 
preserved in the graphs and use the famous gSpan graph 
mining algorithm to discover the frequent graph patterns. 
 
Malware Classification 
We transform each call graph into a feature vector x = {x1, 
x2, …, xn}, where xi=1 if the i-th pattern is contained in that 
graph; otherwise, xi=0. Each vector is associated with a 
class label y, where y=1 if the executable is malicious and 
y=0 if it is benign. Then we apply Naive Bayes and SVM 
to classify these vectors in a vector space. 

Experiment and Results 
We used 1000 malicious executables and 1000 benign 
executables for the experiment and used 10-fold cross 
validation.  
 The confusion matrices of the classification are given 
below.  

Table 1: Confusion Matrix Using Bag of Word 
Presentation 

 Predicted 
(Naive Bayes) 

Predicted 
(SVM) 

 Mal Benign  Mal Benign 
Mal 719 267 Mal 712 296 

 
Actual 

Benign 281 733 Benign 288 704 
 

Table 2: Confusion Matrix Using High Level Function 
Only 

 Predicted 
(Naive Bayes) 

Predicted 
(SVM) 

 Mal Benign  Mal Benign 
Mal 782 243 Mal 751 262 

 
Actual 

Benign 218 757 Benign 249 738 
 We can see that Naive Bayes achieves slightly better 
results in this malware classification task. We also observe 
that BWP will result in a better classification than HLFO. 
This may be because of that graphs and feature vectors 
based on the low-level assembly instructions potentially 
bring a lot of noise or chaos. However, the accuracy of the 
malware classification is not desirable at all. We plan to 
integrate other feature with structure feature to for future 
improvement.   

Figure 2: A call graph example 

Figure 3: Instruction sequence in function “start” 
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