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Abstract In this paper we propose a principled approach to the
. . . crosslingual link detection task usingprrelation cluster-
The crosslingual link detection problem calls for ing [Bansakt al., 2004; Demaine and Immorlica, 200Zor-

identifying news articles in multiple languages that relation clustering is a recent graph-based clusteringdra
report on the same news event. This paper presents  work with interesting theoretical properties. It can be-for
a novel approach based on constrained clustering.  mulated to solve constrained clustering (also known as-semi
We discuss a general way for constrained cluster-  supervised clustering), which we will use for crosslingir
ing using a recent, graph-based clustering frame-  detection. In constrained clustering, one performs clirgie
work called correlation clustering. We introduce with additional constraints (or preferences) on the daiatpo
a correlation clustering implementation that fea- Two typical constraints are must-link (where two items must
tures linear program chunking to allow processing  be in the same cluster) and cannot-link (where two items can-
larger datasets. We show how to apply the corre-  not be in the same cluster). Constrained clustering has re-
lation clustering algorithm to the crosslingual link ceived considerable attention in machine leartiBitgenko et
detection problem and present experimental results  al., 2004; Wagstaftt al., 2001; Xinget al., 2003; we point
that show correlation clustering improves upon the o [Basuet al., 2006 for further references. Solving the cor-
hierarchical clustering approaches commonly used  relation clustering problem is hard but one natural way to ap
in link detection, and, hierarchical clustering ap- proximate the best solution is to encode it in a linear progra
proaches that take constraints into account. ming optimization framework. We combine correlation clus-
tering with a large-scale linear program solution techaiqu
. known as ‘chunking’ in order to solve larger crosslinguakli
1 Introduction detection problems. The contribution of our paper is twafol

Crosslingual link detection is the problem of identifyingws 1. we introduce a practical way for solving the complex
articles in multiple languages that report on the same news  correlation clustering algorithm ifDemaine and Im-
event. It is an important component in online information morlica, 2003,

processing systems, with applications in security andrinfo 2 e demonstrate good performance on crosslingual link
mation retrieval. EXIStIng link detection systems are n}ost detection using the correlation C|ustering approach.

monolingual, with a small number of bilingual link detec- L .
tion systems[Allan et al., 2000; Chen and Chen, 2002; _ N the rest of the paper, we start by reviewing correlation
Spitters and Kraaij, 2002and very few crosslingual link CluStering and discuss how to implement it using linear pro-
detection systemEPouliquenet al.. 2004 that work across 9ramming chunking in section 2. We discuss related work in
many languages. Like the latter, we assume monolingual lingC"Strained clustering and crosslingual link detectiosdo-
r%%n 3. Finally we present experiments in section 4 where we

detection has been done, such that news articles on the sal v X . .
event in a single language already form a single group. Thidmprove upon existing crosslingual link detection systems

assumption is mild, as existing systems like Google New . .

(http:// news. googl e. com the ‘all n related’ links) SZ Correlation Clustering

do just this. Our goal is thus to cluster these monolingualConsider the following problem: we are given a weighted
groups from different languages over a period of time, sb thagraph for which we want to partition the nodes into clusters.
groups reporting on the same event are in the same clustédf.two nodes share an edge with positive weight, we prefer
One needs to take two things into consideration: 1. We wouldhey be in the same cluster; if they share an edge with negativ
rathernot cluster any monolingual groups from the same lan-weight, we prefer they end up in different clusters. The goal
guage together since we assume monolingual link detectioof correlation clustering is to partition the graph intostlers
has done a reasonable job. This is known as ‘cannot-linksto maximally satisfy these preferences.

in constrained clustering as we will discuss later; 2. We in  We review the discussion ifDemaine and Immorlica,
general do not know the number of clusters in advance. 20093 on how to formally describe correlation clustering as



an integer program (IP). Let = (V, E) be a graph with node in the graph and gradually grow a ball centered around
weightw, for every edgée € E. Let E* be the set of edges this node. While increasing the radius of the ball, all the
with positive weightsE+ = {e € E|w. > 0} andE~ bethe nodes that are at a distance smaller than the radius away from
set of edges with negative weighf,” = {e € F|lw. < 0}.  the center of the ball will be included in the ball. The radius
We now associate a binary variabtg, with every edge grows until some technical termination condition is metl Al
(uv) € E with the following interpretation: ift,,, = 1 then  the nodes in the ball are then put into one cluster and removed
u, v are in different partitions, if,, = 0 thenu,v are inthe  from the graph. This procedure is repeated until there are no
same partition. Intuitively.,, is the binary indicator variable more nodes left in the graptDemaine and Immorlica, 2003

for whether we cut the edge or not. Correlation clusteringprove that the original objective function (equation (1f)jle

minimizes the following objective LP relaxation will be bounded above I6y(log ) times the
objective function of the IP where is the number of nodes
> wewe + Y —we(l - ). (1) inthe grapl?
ecE+ e€E- Unfortunately, the triangle inequalities could introduge

3 e ;
We want the variables to correspond to a valid partitioning0 O(7”) constraints in the LP, which puts a heavy burden
on memory requirements. Next we discuss how we tradeoff

if u,v are in the same cluster andt are in the same cluster, ¢ i | lati lusteri
thenu, + must be so too. This can be achieved by the triangl%nemory or runtime so we can solve correiation clustering
or larger problem sizes.

inequality constraints,,, +x.,; > x,; below. Simplifying the
objective function we find the correlation clustering irdeg 5o | p Chunking

program. Linear program chunkingBradley and Mangasarian, 2400

miny Y ecr WeTe is a technique to convert a large linear program into an iter-
subjectto z. € {0,1}, Vee E ) ative procedure on much smaller sub-problems, thus reduc-
Typ + Tyt = Typ, Vuv,vt,ut € E ing the memory need. The iterative procedure produces the
Ty = Ty, Yu,v eV same solution and is guaranteed to terminate. It works as fol
lows: one first breaks up all the constraints istwnks and
solves the optimization problem using only the first chunk of
constraints. Thective constraints are those inequality con-
%traints that achieve equality at the solution. Next, orepke
only the active constraints from the first chunk, adds allcon
straints from the second chunk, and solves the LP again. This

ters; the algorithm determines the optimal number of chgste procedure is repeated, looping through all chunks over and

¢ tically. S dlv. th h ed iaht be arb2Ver until some convergence criterion is met. One can arbi-
automatically. secondly, the graph edge Weignts can be ar {rarily set the size of the chunks to reduce the memory load
trary and do not need to satisfy any metric condition.

of the iterative procedure.
2.1 Linear Program Approximation Let a general linear program be described as,

Unfortunately solving the correlation clustering IP in €% min{c' z|Hz > b}, (€)]
actly is N P-Hard. Recent theoretical results on approxima- *

tion algorithms]Bansalet al., 2004, in particularilDemaine ~ With ¢ € R", H € R™*" b € R™. Let the constraints
and Immorlica, 2008 propose practical approaches to cor-[/{ 0] be partitioned intol blocks, possibly of different
relation clustering. We build on the work [[Demaine and Sizes, as follows:

The weightsw are input to the algorithm, and can encode
must-links and cannot-links besides similarities betwedatia
items. As formulated above, correlation clustering has tw
attractive properties that make it suitable for crosslaidink
detection in particular and constrained clustering in gaine
First of all, one does not need to specify the number of clus

Immorlica, 2003 where the authors describe @glog n) ap- H! pl
proximation by relaxing the IP to a linear program (LP), and ) )
rounding the solution of the LP by a region growing tech- [H b= : : (4)
nique. We replace constraimt € {0,1} by z. € [0,1] in H! b

equation (2) to relax the IP to an LP. The solution to this LP . o . _ _
might include fractional values which we will have to round. At itérationj we computer” by solving the following linear
We point to[Demaine and Immorlica, 2003or a detailed ~Program,

description and theoretical analysis of the rounding afyor min{c' 2/ |[HU medDyi > p(0 mod D) o frigi > b} (5)
and limit ourselves to a qualitative description in this @ap x7

One can In_terpret the value of the LF.) variables as dlstances. 2Although the theoretical analysis [Demaine and Immorlica,
when a variable has_ Va_lumthe two _adj_acent r_'OdeS_ gointhe 2009 requires the ball to grow continuously, this is not practical.
same cluster as their distancéisvhile if a variable isl, the gy redefining the volume ifiDemaine and Immorlica, 20030 be
two adjacent nodes go into different clusters. The roundinghe total volume of edges inside the basiwell as the total volume
procedure now needs to decide on how to partition the graplhside the cut, i.e., replacep,w - Tvw - (1 — Tuw) BY Pow - Tow
given that some nodes are at fractional distances away fromn their definition, and modifying the description of step 3 in their

each other. Intuitively, the rounding algorithm will pick a algorithm as: ‘Growr by min{zu, — 7 > 0,0 ¢ B(u,r)} s0
e that B(u, r) includesanother entire edge’, the theoretical guarantee

We will denote an edge both asc E and as a pair of vertices  stays the same but we only need to check the radiufinite number
(w) € E of times.



where[H° ©°] is empty andH’ '] is the set of active 1 cannot-link 2

constraint, i.e. all inequalities satisfied as equalitigs-bat
iterationj. We stop iterating whea” 7 = ¢Tz71" for some
pre-specified integar. We point to[Bradley and Mangasar-
ian, 2000 for more details and proofs of the finite termination
of this algorithm.
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Constrained or semi-supervised clust_ering has enjoye@ som Figure 2: Toy dataset
recent attentior{Basu et al., 2006; Bilenkoet al., 2004;
Davidson and Ravi, 2005; Wagstadf al., 2001; Xing et
al., 2003. In [Basuet al., 2004, the authors categorize all respondence.
semi-supervised methods into two classesstraint-based
anddistance-based methods. The constraint-based methods,
such agWagstaffet al., 2001 and to which our approach 4 EXxperiments
belongs, rely on the must-link and cannot-link constraiats
guide the clustering algorithm in finding a partitioning ttha In this section, we first illustrate correlation clusteriog a
does not violate the constraints. Distance-based method®)y dataset. We then discuss how to solve the crosslingual
such ag[Xing et al., 2003, learn a metric using the con- link detection problem using a correlation clustering loase
straint information and then apply existing clusteringaalg constrained clustering approach and show how this improves
rithms to the data points in the learned metric space. TheséPon existing hierarchical clustering approaches.
approaches require specifying the number of clusters eefor
hand. One solution to this issue is to use variants of hierarc 4.1 Correlation Clustering on a Toy Dataset
cal clustering that take constraints into account, EDgwvid-
son and Ravi, 2045 By changing where to cut the dendro- It is straightforward to adapt correlation clustering fane
gram, one can control the number of clusters. The main difstrained clustering. Say we are given a set of itdims=
ference between hierarchical clustering with constraamis {1, u2,-- - ,u}, @ pairwise similarity measure: U xU —
correlation clustering is that the former makes local, dyee R, a setCy, C U x U of must-link constraints and a set
decisions at every step while correlation clustering ojzim Cc C U x U of cannot-link constraints. We build a graph
the clustering over the whole graph at once. One motivatiofs where the set of vertices . As a first step, we add an
for our work is the observation that the crosslingual link de edge for all pairs of nodes not iiy; U Cc and set the edge
tection systems ifiPouliquenet al., 2004; Allanet al., 2000;  weight according to the similarity measufe Let M be a
Chen and Chen, 20020 not use constrained clustering tech- constant that is sufficiently larger than the sum of the abso-
nigues. lute values of all weights in the graph so far. In the second
So far, correlation clustering has not been applied to mastep, for all the pairs iy, andC¢, we add either hard or
chine learning tasks very often. We are only awar@\oé- soft preferences: if we assume that the constraints are hard
Callum and Wellner, 2045~vho implement a more restricted We add an edge for every must-link constraints with weight
version of correlation clustering ifBansalet al., 2004 for M and an edge for every cannot-link constraint with weight
noun co-reference. — M. If we want soft preferences, we can use values smaller
The only crosslingual link detection system that cov-thani according to the strength of the preferences.
ers a large set of languages we are aware of is described Figure 2 shows a toy dataset consisting of four nodes with
in [Pouliquenet al., 2004. The authors describe a system a cannot-link constraint between nodes 1 and 2. The weights
which performs crosslingual link detection as well as mono-are specified in the figure. The edge not shown in the figure
lingual news tracking, i.e. the identification of relatedwse has a similarity of zero. We use1000 for the cannot-link
over time in one particular language. Their approach usegonstraint edge weight. The objective function for thisadat
a very rich article representation based on extracting dameis to minimize—1000z; 2) + 30z (1 3) +252 (2 3) + 207 (2,4) +
entities, keywords and geographical names. In addition]5z s 4) Subject to the triangle inequality constraints. Solv-
the articles are mapped onto the multilingual thesaurus EUNg the IP exactly would give us a solution that assigrte
ROVOC|Steinbergeet al., 2009 which categorizes the arti- all variables except(; 3y = x(24) = 2(3,4) = 0; this cor-
cles in several of 6000 hierarchically organized subjedts.  responds to the clusteringl }, {2, 3,4}. Although nodes 1
system, on the other hand, uses machine translation tools tmd 3 have the highest similarity, the cannot-link constrai
represent articles in a uniform way. This is a comnibrab  guides the correlation clustering algorithm to not takeend
and Resnik, 200way of working with multilingual corpora. into the cluster with 2 and 3. Note how a hierarchical clus-
Our experiments show that although the translation is noisytering algorithm would start off wrong as it merges nodes 1
it does not significantly affect performance. Our crossli@g and 3 together and thus fails to find the best clustering. Even
link detection task is also related to the work[iDiaz and  a hierarchical clustering algorithm that takes constsaiinito
Metzler, 2007, where the authors introduce a framework for account will not find the best clustering as it will greedily
aligning documents in parallel corpora based on topical cormerge nodes 1 and 3 together.



Ausschreitungen nach US-Angriffen | Schwere Ausschreitungen mit Toten in Kabul | Ausschreitungen mit 20 Toten in Kabul | ...
Emeutes a Kaboul | Emeutes meurtriéres a Kaboul | L'US Army met le feu a Kaboul | L'Afghanistan dans la tourmente | ...
Violentas protestas y saqueos en Afganistan | Afganos evallan dafios tras disturbios anti estadounidenses | ...

Afghanistan: truppe presidiano Kabul dopo disordini anti USA | Torna tranquillita dopo il coprifuoco | Truppe presidiano Kabul | ...
Brake failure caused crash that sparked Kabul riot | Kabul under curfew after deadly riot | Crash spurs deadly Kabul riot | ...
Protestos em Afeganistdo | Acidente de transito gera caos em Cabul | Vaga de violéncia na capital afega | ...
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Figure 1: Samples from the large dataset.

4.2 Crosdslingual link detection ticle groups often have a small but positive similarity due

We generated five datasets by crawling Google News. W& common words. If we use the similarity (6) directly as
specifically focused our experiments on news articles whict9raph edge weights for correlation clustering, many irrele
Google categorized as ‘world news’ as we assume this i¥ant groups will l:_)e _clustered togethe(. For the problem of
the category where the most interesting cross-lingualslink“nk detection, this is clearly not desirable. We therefore
can be made. The first four datasets each consist of roughfubtract a bias constantfrom all similarity values so that
60 monolingual ‘world news’ article groups from three lan- Wuv = Sas — t. Intuitively, too small a similarity (6) between
guages: English, German and French. Each of these fodWo article groups is in fact evidence that they shoudtibe
datasets was generated one week apart by crawling the top 3bthe same cluster. By changing the blage change the re-
article groups for each language in April 2006. This resultsSulting clustering, which is how we generate precisioraliec
in a total of about 60 article groups in each dataset. In Mayurves. For all the experiments presented below, we chase ou
2006, we generated the fifth dataset which is larger and corftias values as follows: we started with a bias such that only
sists of roughly 160 article groups from the ‘world news-cat One edge in the graph remains positively weighted. Next, we
egory in eight different languages: English, German, dtali Steadily increase the bias such that anoth&f; of the edges
French, Portuguese, Spanish, Korean and Chinese. FigurePfcomes positively weighted. On the small datasets, we re-
shows a sample from the larger dataset. For all five datasetBeated the experiments urifis% of the edges are positively
we manually created a ground truth clusteing weighted while on the larger datasets we repeat the experi-
For correlation clustering, we construct a fully-connelcte Mments until10% of the edges are positively weighted. We
graph where each node is a monolingual article group. W&OMPUte precision and recall values relative to our njayuall
create cannot-links between all pairs of article groupsfro labeled ground truth. We count an edge as true positive (TP),
the same language and choosi)® as the weight for these if its two article groups appear in the_ same cll_Jster in both
cannot-link edges. We compute similarity values between arground truth and our results, false positive (FP) if they do n
ticle groups from different languages with the followingpr ~@Ppear in the same cluster in ground truth but do appear to-
cedure: first we concatenate all the article titles in a monodether in our results, and so on. Precision and recall istarbet
lingual group to form a ‘document representation’ for the measure than accuracy for_ourtask, since the baselinessf pla
group. We then use Google machine translation to automatsifying every edge as ‘not in same cluster’ would have high
cally translate the ‘document into English, and removepsto accuracy because of the large number of true negatives. We
words from the translation. Therefore monolingual groupsised CPLEX 9.0 on a 3.0 GHz machine with 2GB RAM to
in different languages are represented by their correspgnd Solve the linear programs. _ .
(noisy) English translation, providing a way to computeithe ~ Our first round of experiments are designed to illustrate
similarities. Empirically we found no difference in perfor how taking constraints into account improves performance
mance using different machine translation tools such as B&2n the crosslingual link detection problem. We compare
belfish and Wordlingo. Next, for each monolingual group,Our correlation clustering algorithm to the hierarchicaise
we convert the translated document into a TF.IDF vectoft€ring approach which has commonly been used for the
@ = (wyws - - w)y)), With w; = n; - log (|D|/|D;|), where crosslingual link detection problerf'Chen'and Chen, 2002;
n; is the number of times word appears in the document _Poullquenet al., 2_004, and cons_tralned hl_erarchl_cal cluster-
representing the article group represents the set of arti- iNg such agDavidson and Ravi, 2005 Hierarchical clus-
cle groups in the dataset ari?} represents the set of article tering is done by choosing a bias value and adding edges to
groups that include word;. We compute the similarity,,., the graph in descending order according to their weight unti

between any two TF.IDF vectors, o as their inner product, ~the edge weights become smaller than the bias. We then out-
put the connected components as the resulting clusters. Con

VI strained hierarchical clustering is similar, except thavery
Swp = Z w; - Vj. (6) step we only add an edge if it does not introduce a path be-
i=1 tween two nodes in a cannot-link constraint. Again, we out-

put the connected components as the resulting clusters. The

left plot in Figure 3 shows the average precision-recallrove
3The datasets are availabletatt p: / / ww. ¢s. wi sc. edu/ our four small datasets. If we keep the number of positively

~j vangael / newsdat a/ . weighted edges small (large bias) then both types of hierar-

Note that even with stop-word removal, two unrelated ar-
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Figure 3: Left: average precision-recall over four smatbdats. Middle: precision-recall for the large datasegghRiaverage
runtime over four small datasets.

chical clustering perform as well as correlation clustgrin the precision-recall curves: at very low bias, due to the-sym
Inspecting the datasets, this behavior can be explaineleby t metry of the graph, the optimal LP solution has a number of
fact that there are a number of news events for which the artivariables with).5 values. From the theoretical analysis of the
cles use a subset of the vocabulary that is not commonly usedunding algorithm, we know that a radius cannot grow to be
in other articles. Our similarity measure assigns larggtwsi  0.5. As a result of these properties, in the low bias regime
among article groups in different languages on these event large number of nodes will end up as singleton clusters.
and very small weight between these article groups and artifhis prohibits recall from increasing tb0 and we observe
cle groups on a different topic. In a sense these are ‘easy’ irthe precision-recall curve loop back towards lower reaadl a
stances which both hierarchical clustering approaches#is w higher precision. Because the curve essentially folloves th
as correlation clustering get right. If we increase the numfirst path ‘in the opposite direction’ we did not include this

ber of positive edges (small bias) then the simple hierarchiFigure 3 for clarity.

cal clustering algorithm performs much worse than correla- Our next experiment was designed to evaluate how much
tion clustering. As a simple hierarchical clustering a@mio  the LP approximation algorithm improves the runtime over
has no notion of cannot-link constraints, it will clusteogps solving the IP exactly. The rightmost plot in Figure 3 shows
from the same language together. Usually, crosslingull lin the average runtime over the four small datasets of solvieg t
detection systems choose to leave these clusters out,ibut thexact IP compared to solving the approximation algorithm.
decision comes at the price of lower recall. Constrained hi-Every dot in the graph represents the time required to solve
erarchical clustering performs a little better as it takes 0 eijther the IP or the LP with rounding for a specific bias. It
assumption about the correctness of the monolingual groufis clear from this figure that the LP approximation algorithm
into account. Nonetheless, Figure 3 also shows that corréor correlation clustering is significantly faster than\sog
lation clustering, which takes the whole graph into accounthe IP directly. However, even on the larger dataset the main
instead of making local greedy decisions can still outpenfo bottleneck is not so much the runtime but rather the memory
constrained hierarchical clustering. We attempted to comp requirements. On this large dataset, the underlying gragh h
our approach to the constrained clusteringBilenko et al., 160 nodes which results in over 000,000 constraints for
2004 using their UTWeka implementation. The implemen- both the IP and LP. This is about as large a correlation clus-
tation ended up returning many empty clusters, resulting inering instance we can solve without using chunking on our
low precision and recall. machine with2GB RAM.

The middle plot in Figure 3 shows the precision-recall for - Qur last experiment shows the results of applying chunk-
the large dataset; it indicates the trend we observed with thing to the LP for correlation clustering. Our experimental
smaller datasets: taking into account constraints cdrirstil setup is the following: we create instances of the cormtati
prove the performance of crosslingual link detection. clustering with random edge weights, distributed rouglaly a

Next, let us consider the solution found by the approxi-cording to the instances of interest to crosslingual lintede
mation algorithm and the exact integer solution. Figure 3tion. We chose our chunk size to be as large as possible while
shows that on the small datasets the two solution are exacthtill having some workspace memory for the processing in
equal. Inspecting the LP solutions, we find that in the highbetween iterations: this resultedlif® constraints per chunk.
bias regime, almost no rounding is necessary as the LP séinally we use a value aof = 4 as our stop condition. Table 1
lution is the exact IP solution. Only in the low bias regime, shows the runtime for chunking versus solving the whole LP
when more edges are positively weighted, rounding becomeat once. Correlation clustering instances of size 128 are th
necessary. On the large dataset, Figure 3 shows that althougjrst instances where the number of constraints is larger tha
there is a small difference between the two solutions, the LRhe chunk size. At this size, the runtime overhead for chunk-
relaxation with rounding does well to find a good approx-ing is mostly due to the stop condition. Starting from graphs
imation to the integer solution. We observed rather unexwith around 200 nodes we cannot fit the whole LP in memory
pected behavior from the rounding algorithm that influencesanymore and we must apply chunking to tradeoff memory for



runtime. Table 1 shows that chunking is useful for scaling udBasuet al., 200d Sugato Basu, Mikhail Bilenko, Arindam
the size of solvable correlation clustering problem butites Banerjee, and Raymond J. Mooney. Probabilistic semi-
limitations too. First of all, the runtime increases fagtist supervised clustering with constraints. In O. Chapelle,
is due to the fact that doubling the size of the graph roughly B. Sclolkopf, and A. Zien, editors,Semi-Supervised
corresponds to an eight-fold increase in the number of con- Learning, pages 71-98. MIT Press, 2006.

straints and equivalently an eight-fold increase in the loeim [Bilenkoet al., 2004 Mikhail Bilenko, Sugato Basu, and
of chunks. Another problem that arises is that the set of ac- Raymond.:J. Mooney. Integrating, constraints ana metric

tive constraints f/) can become larger than the chunk size learning in semi-supervised clustering.|EML, 2004
and exhaust available memory. We believe these problenF _ ' ' '
are inherent to correlation clustering approximationsedas (Bradley and Mangasarian, 200@s Bradley and OL Man-

on integer programming. gasarian. Massive data discrimination via linear support
vector machines. Optimization Methods and Software,
#nodes #constraints whole LP chunking LP 13(1):1-10, 2000.
64 1x10° 48 72 [Chen and Chen, 2002Y.J. Chen and H.H. Chen. NLP and
128 1 x 10° 203 1065 IR approaches to monolingual and multilingual link detec-
192 3 X 102 outof memory 1402 tion. Proceedings of the 19th international conference on
256 8 x 10 out of memory 2708 Computational linguistics-Volume 1, pages 1-7, 2002.
320 1x 107 out of memory 5070 i ) . :
384 9 % 107 out of memory 17298 [Davidson and Ravi, 2005l. Davidson and S.S. Ravi. Ag-
448 4% 107 out of memory 52803 glomerative Hierarchical Clustering with Constraints:
512 6 % 107 out of memory  out of memory Theoretical and Empirical Resultsecture notes in com-
puter science, pages 59-70, 2005.
Table 1: Runtime in Seconds [Demaine and Immorlica, 2003E. Demaine and N. Immor-

lica. Correlation clustering with partial informatioRroc.
of 6th APPROX, pages 1-13, 2003.

S Qonclusoq . . _ [Diab and Resnik, 20Q1M. Diab and P. Resnik. An unsu-
In this paper we introduce an implementation for correfatio  pervised method for word sense tagging using parallel cor-
clustering using linear program chunking that scales beéyon o1, Proceedings of the 40th Annual Meeting on Associa-

the implementation of the algorithm [Pemaine and Immor- tion for Computational Linguistics, pages 255262, 2001.
lica, 2003. However, we find that even our chunking method

which can trade off memory for runtime has its limits due to [Pz and Metzler, 2007F. Diaz and D. Metzler. Pseudo-
the growth O(n?)) of the linear program size. Nonetheless, Aligned Multilingual Corpora. Proceedings of the 20th
we believe that for constrained clustering problems of lim- 1JCAI, 2007.

ited size (a few hundred data points) correlation clustgisn  [McCallum and Wellner, 2045A. McCallum and B. Well-
worth pursuing. Moreover, our experiments on the crosslin- ner. Conditional models of identity uncertainty with appli
gual link detection task show that correlation clusteringr o cation to noun coreferencédvancesin NIPS, 17, 2005.
performs both hierarchical clustering and hierarchicakel [Pouliqueret al., 2004 B. Pouliquen, R. Steinberger, C. Ig-

tering with constraints. _ _ nat, E. Kasper, and I. Temnikova. Multilingual and cross-
In future work, we plan to investigate whether other al- lingual news topic tracking. 20:23-27, 2004.

gorithms for correlation clustering have smaller time and._ N . -
space complexity. Also, we believe it would be interesting[SPitters and Kraaij, 2042M. Spitters and W. Kraaij. Un-

to combine correlation clustering and our machine transla- Supervised event clustering in multilingual news streams.
tion based representation with the rich document reprasent ~ Proceedings of the LREC2002 Workshop on Event Mod-

tion from [Pouliquenet al., 2004 to improve performance of ~ €ling for Multilingual Document Linking, pages 42-46,

crosslingual link detection even more. 2002.
[Steinbergeet al., 2004 Ralf Steinberger, Bruno
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