
Reward Poisoning Attacks on Offline
Multi-Agent Reinforcement Learning

Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie

*University of Wisconsin-Madison

*How to Manipulate Competitive
Agents*

Young Wu, Jeremy McMahan, Xiaojin Zhu, Qiaomin Xie

*University of Wisconsin-Madison

MARL

Learning Goals

Learning Goals

• Agents learn a joint policy .π : 𝒮 → Δ(𝒜)

Learning Goals

• Agents learn a joint policy .π : 𝒮 → Δ(𝒜)

• is an “optimal” strategy.π

Offline Learning

Offline Learning
• Offline dataset records the episodes of the interaction.

Offline Learning
• Offline dataset records the episodes of the interaction.

• Agents use the shared data to compute a joint policy .π

Offline Learning
• Offline dataset records the episodes of the interaction.

• Agents use the shared data to compute a joint policy .π

Offline Learning
• Offline dataset records the episodes of the interaction.

• Agents use the shared data to compute a joint policy .π

Offline Learning
• Offline dataset records the episodes of the interaction.

• Agents use the shared data to compute a joint policy .π

Offline Learning
• Offline dataset records the episodes of the interaction.

• Agents use the shared data to compute a joint policy .π

Offline Learning
• Offline dataset records the episodes of the interaction.

• Agents use the shared data to compute a joint policy .π

π

Markov Games

Markov Games
• Extension of MDPs to the multi-agent setting.

Markov Games
• Extension of MDPs to the multi-agent setting.

• Think of: MDP with a game-reward matrix at each state.

Markov Games
• Extension of MDPs to the multi-agent setting.

• Think of: MDP with a game-reward matrix at each state.

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2

Markov Games
• Extension of MDPs to the multi-agent setting.

• Think of: MDP with a game-reward matrix at each state.

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2

Reward depends
on actions of all

players.

Markov Games
• Extension of MDPs to the multi-agent setting.

• Think of: MDP with a game-reward matrix at each state.

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2

Reward depends
on actions of all

players.

Transition depends
on actions of all

players.

Solution Concepts

Solution Concepts

• Solution to a game takes form of an Equilibrium.

Solution Concepts

• Solution to a game takes form of an Equilibrium.

• Examples: NE, DSE, CCE

Rationality

Rationality

• Simplest assumption on rationality: no agent takes a strictly dominated action,
.Qi(s, (ai, a−i)) < Qi(s, (a′￼i, a−i))

Rationality

• Simplest assumption on rationality: no agent takes a strictly dominated action,
.Qi(s, (ai, a−i)) < Qi(s, (a′￼i, a−i))

• Strict Markov Perfect Dominant Strategy Equilibrium (MPDSE) is the
corresponding equilibrium concept.

Rationality

Key Fact: Rational agents always play the MPDSE if it exists.

• Simplest assumption on rationality: no agent takes a strictly dominated action,
.Qi(s, (ai, a−i)) < Qi(s, (a′￼i, a−i))

• Strict Markov Perfect Dominant Strategy Equilibrium (MPDSE) is the
corresponding equilibrium concept.

Robust Learners

Plausible Games

Plausible Games

• To deal with dataset uncertainty, robust learners create a set of
plausible games, PG.

Plausible Games

• To deal with dataset uncertainty, robust learners create a set of
plausible games, PG.

PG

Plausible Games

• To deal with dataset uncertainty, robust learners create a set of
plausible games, PG.

• Agents believe the true Markov Game lies within PG w.h.p.

PG

Plausible Games

• To deal with dataset uncertainty, robust learners create a set of
plausible games, PG.

• Agents believe the true Markov Game lies within PG w.h.p.

• Example: Confidence Bounded Learners (CBL) assume that
.CIR

i (s, a) = {Ri(s, a) ∈ [−b, b] ∣ |Ri(s, a) − R̂i(s, a) | ≤ ρR(s, a)}

PG

Robust Policies

Assumption: the policy the agents learn is a solution to one of the games in PG.π

Robust Policies

Assumption: the policy the agents learn is a solution to one of the games in PG.π

Sol() = π

Robust Policies

Assumption: the policy the agents learn is a solution to one of the games in PG.π

Sol() = π

Robust Policies

Assumption: the policy the agents learn is a solution to one of the games in PG.π

Sol() = π Sol() π=

Poisoning

Offline Poisoning

π

Offline Poisoning

π

What the agent sees.

Offline Poisoning

π

Offline Poisoning

π

The Data is Corrupted!

Offline Poisoning

π

Offline Poisoning

π

Offline Poisoning

π

Offline Poisoning

π

Offline Poisoning

π

Attack Goal

Attack Goal
Attacker wants .π = π†

Attack Goal
Attacker wants .π = π†

• Attacker can change the rewards appearing in the dataset at some cost.

Attack Goal
Attacker wants .π = π†

• Attacker can change the rewards appearing in the dataset at some cost.

• Attacker wants to minimize its cost, usually the norm: .L1 | |r0 − r† | |1

Attack Goal
Attacker wants .π = π†

• Attacker can change the rewards appearing in the dataset at some cost.

• Attacker wants to minimize its cost, usually the norm: .L1 | |r0 − r† | |1

min
r†

| |r0 − r† | |1

The Attack Problem:

s.t. is learned from π† r†

Bottlenecks

Bottlenecks
• Rewards must lie in the natural range .[−b, b]

Bottlenecks
• Rewards must lie in the natural range .[−b, b]

• Data may be scarce (Low Data Coverage).

Bottlenecks
• Rewards must lie in the natural range .[−b, b]

• Data may be scarce (Low Data Coverage).

-b, -b -b, -b

-b, -b

4x 10x

2x 0x

Bottlenecks
• Rewards must lie in the natural range .[−b, b]

• Data may be scarce (Low Data Coverage).

π† = (2,2)
Can never be learned
for certain learners!

-b, -b -b, -b

-b, -b

4x 10x

2x 0x

Bottlenecks
• Rewards must lie in the natural range .[−b, b]

• Data may be scarce (Low Data Coverage).

π† = (2,2)
Can never be learned
for certain learners!

What can the Attacker do?

-b, -b -b, -b

-b, -b

4x 10x

2x 0x

Algorithms

Bandit Games
A bandit game is a single normal form game ().S = H = 1

Bandit Games
A bandit game is a single normal form game ().S = H = 1

-1, -1 1, 1

1, 1 1, 1

Bandit Games
A bandit game is a single normal form game ().S = H = 1

-1, -1 1, 1

1, 1 1, 1

To ensure is learned, suffices to make it a strict DSE.π† = (1,1)

Bandit Games
A bandit game is a single normal form game ().S = H = 1

-1, -1 1, 1

1, 1 1, 1

To ensure is learned, suffices to make it a strict DSE.π† = (1,1)

-1, -1 1, 1

1, 1 1, 1

Bandit Games
A bandit game is a single normal form game ().S = H = 1

-1, -1 1, 1

1, 1 1, 1

To ensure is learned, suffices to make it a strict DSE.π† = (1,1)

-1, -1 1, 1

1, 1 1, 1

Bandit Games
A bandit game is a single normal form game ().S = H = 1

-1, -1 1, 1

1, 1 1, 1

1, 1 1, 0

0, 1 0, 0

To ensure is learned, suffices to make it a strict DSE.π† = (1,1)

-1, -1 1, 1

1, 1 1, 1

Strict DSE

Strict DSE

1, 1 1, 0

0, 1 0, 0

R1(1,1) > R1(2,1)

Strict DSE

1, 1 1, 0

0, 1 0, 0

R1(1,1) > R1(2,1)

1, 1 1, 0

0, 1 0, 0

R1(1,2) > R1(2,2)

Strict DSE

1, 1 1, 0

0, 1 0, 0

R1(1,1) > R1(2,1)

1, 1 1, 0

0, 1 0, 0

R1(1,2) > R1(2,2)

1, 1 1, 0

0, 1 0, 0

R2(1,1) > R2(1,2)

Strict DSE

1, 1 1, 0

0, 1 0, 0

R1(1,1) > R1(2,1)

1, 1 1, 0

0, 1 0, 0

R1(1,2) > R1(2,2)

1, 1 1, 0

0, 1 0, 0

R2(2,1) > R2(2,2)

1, 1 1, 0

0, 1 0, 0

R2(1,1) > R2(1,2)

Optimal Poisoning

Optimal Poisoning
Can formulate an LP to compute optimal cost attacks:

Optimal Poisoning
Can formulate an LP to compute optimal cost attacks:

Ri(π†
i , a−i) ≥ Ri(ai, a−i) + ϵ ∀i, ai ≠ π†

i , a−i

Optimal Poisoning

1, 1 1, 1-𝜀

1-𝜀, 1 1-𝜀, 1-𝜀

Can formulate an LP to compute optimal cost attacks:

Ri(π†
i , a−i) ≥ Ri(ai, a−i) + ϵ ∀i, ai ≠ π†

i , a−i

Dominance

Qπ†

i (s, (π†
i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

The dominance equation ensures is a strict MPDSE for any game with Q-function :π Q

Dominance

Qπ†

i (s, (π†
i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

The dominance equation ensures is a strict MPDSE for any game with Q-function :π Q

• MPDSE is equivalent to forcing a DSE in each stage game.

Dominance

Qπ†

i (s, (π†
i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

The dominance equation ensures is a strict MPDSE for any game with Q-function :π Q

• MPDSE is equivalent to forcing a DSE in each stage game.

• Boils down to Optimal Game Design.

Attacker’s Strategy

Attacker’s Strategy

• Force to be a MPDSE in every plausible game.π†

Attacker’s Strategy

• Force to be a MPDSE in every plausible game.π†

• Ensures robust rational agents learn by assumption.π†

Attacker’s Strategy

• Force to be a MPDSE in every plausible game.π†

• Ensures robust rational agents learn by assumption.π†

• Let be the set of plausible Qs.PQ = {Q ∣ Q = Qπ†

G , G ∈ PG}

Attacker’s Strategy

• Force to be a MPDSE in every plausible game.π†

• Ensures robust rational agents learn by assumption.π†

• Let be the set of plausible Qs.PQ = {Q ∣ Q = Qπ†

G , G ∈ PG}

• Attacker needs dominance to hold for all .Q ∈ PQ

Complications

Complications

PQ alone could be difficult to characterize or compute!

Complications

PQ alone could be difficult to characterize or compute!

Complications

PQ alone could be difficult to characterize or compute!

Instead, focus on nice supersets of PQ.

Extreme Dominance

Sufficient condition: ensure domination between the extreme Q-functions,

Extreme Dominance

Qπ†

i
(s, (π†

i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

Sufficient condition: ensure domination between the extreme Q-functions,

Extreme Dominance

Qπ†

i
(s, (π†

i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

Sufficient condition: ensure domination between the extreme Q-functions,

Where, the Q’s are the point-wise extremes:

Qπ†

i
(s, a) = min

G∈PG
Qπ†

G,i(s, a)

Qπ†

i (s, a) = max
G∈PG

Qπ†

G,i(s, a)

Linear Programming

Linear Programming

• The Extreme Dominance Constraint is linear.

Linear Programming

• The Extreme Dominance Constraint is linear.

• For CBL, the extreme Q-functions are defined by linear inequalities.

Linear Programming

• The Extreme Dominance Constraint is linear.

• For CBL, the extreme Q-functions are defined by linear inequalities.

• This extends the previous ideas about games to datasets.

Linear Programming

• The Extreme Dominance Constraint is linear.

• For CBL, the extreme Q-functions are defined by linear inequalities.

• This extends the previous ideas about games to datasets.

The attacker can efficiently compute minimum cost attacks
using a Linear Program

Solutions

Feasibility

Feasibility

Can the attacker make any a MPDSE?π†

Feasibility

ι ≤ 2b − (H + 1) ρR
h (s, a), ∀ h ∈ [H], s ∈ S, a ∈ A

Theorem: Poisoning CBL is feasible if the following condition holds:

Can the attacker make any a MPDSE?π†

Feasibility

ι ≤ 2b − (H + 1) ρR
h (s, a), ∀ h ∈ [H], s ∈ S, a ∈ A

Theorem: Poisoning CBL is feasible if the following condition holds:

What does this mean?

Can the attacker make any a MPDSE?π†

Coverage Requirements
Feasibility through data coverage.

Coverage Requirements

Corollary: Poisoning CBL is feasible if the following condition holds:

Nh(s, a) ≥
4b2 (H + 1)2 log ((H S A)/δ)

(2b − ι)2 = Ω̃(H2) .

Feasibility through data coverage.

Coverage Requirements

Corollary: Poisoning CBL is feasible if the following condition holds:

Nh(s, a) ≥
4b2 (H + 1)2 log ((H S A)/δ)

(2b − ι)2 = Ω̃(H2) .

Feasibility through data coverage.

Yes, if given enough data!

Coverage Requirements

Corollary: Poisoning CBL is feasible if the following condition holds:

Nh(s, a) ≥
4b2 (H + 1)2 log ((H S A)/δ)

(2b − ι)2 = Ω̃(H2) .

This implies:
.K ≥ H3SA

Feasibility through data coverage.

Yes, if given enough data!

Cost Analysis

Cost Analysis

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2()Poison

Cost Analysis

vs

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2()Poison

Cost Analysis

vs

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2()Poison

-5, 5 -2, 2

3, -3 1, -1()Poison
2, -3 -5, 9

8, 6 7, 7)(Poison
-3, 5 -2, 6

2, -2 2, -2)(Poison
1, -1 0, 8

8, 0 2, -2)(Poison++ +

Cost Analysis

vs

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2()Poison

-5, 5 -2, 2

3, -3 1, -1()Poison
2, -3 -5, 9

8, 6 7, 7)(Poison
-3, 5 -2, 6

2, -2 2, -2)(Poison
1, -1 0, 8

8, 0 2, -2)(Poison++ +

*Poisoning is not separable over stage games.

Cost Analysis

vs

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2()Poison

-5, 5 -2, 2

3, -3 1, -1()Poison
2, -3 -5, 9

8, 6 7, 7)(Poison
-3, 5 -2, 6

2, -2 2, -2)(Poison
1, -1 0, 8

8, 0 2, -2)(Poison++ +

*Poisoning is not separable over stage games.
Can exactly characterize!

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2

Bound Reduction
Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.

-5, 5 -2, 2

3, -3 1, -1

2, -3 -5, 9

8, 6 7, 7

-3, 5 -2, 6

2, -2 2, -2

1, -1 0, 8

8, 0 2, -2

Cost Lower-bounds

Cost Lower-bounds

Before Attack

Cost Lower-bounds

Before Attack

Cost Lower-bounds

Before Attack After Attack

Cost Lower-bounds

Optimal Attack Cost:

H |S | min
h,s,a

Nh(s, a) |A |n−1 (2b + 2ρ + ι)

Before Attack After Attack

Cost Lower-bounds

Optimal Attack Cost:

H |S | min
h,s,a

Nh(s, a) |A |n−1 (2b + 2ρ + ι)

Before Attack After Attack

Exponential dependency on n!

The Roles of ρ

The Roles of ρ

ρP If the uncertainty in transition is high,

C(D) ≥
H

∑
i=1

C(Dh)

The Roles of ρ

ρP If the uncertainty in transition is high,

C(D) ≥
H

∑
i=1

C(Dh)

ρR If the uncertainty in reward is low,

C(D) ≤
H

∑
i=1

C(Dh)

The Roles of ρ

ρP If the uncertainty in transition is high,

C(D) ≥
H

∑
i=1

C(Dh)

ρR If the uncertainty in reward is low,

C(D) ≤
H

∑
i=1

C(Dh)

The optimal cost could potentially be greater than optimally poisoning
each subdataset!

Conclusion

Summary

• In large datasets, poisoning is always feasible, though costly.

• Thus, we illustrate the need for provable defenses against offline reward poisoning.

