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e Solution to a game takes form of an tquilibrium.
e Examples: NE, DSE, CCE
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e Simplest assumption on rationality: no agent takes a strictly dominated daction,

Q.(s, (a;,a_;)) < O, (ai’, a_;)).

o Strict Markov Perfect Dominant Strategy Equilibrium (MPDSE) 1s the
corresponding equilibrium concept.

Key:atioa\ e nts a\vvays DSE if it ><




Robust Learners



Plausible Games



Plausible Games

* Jo deal with dataset uncertainty, robust learners create a set of
plausible games, PG,




Plausible Games

* [o deal with dataset uncertainty, robust learners create a set of PG

plausible games, PG,

6= 650
6= 650
6= 650




Plausible Games

* [o deal with dataset uncertainty, robust learners create a set of PG

plausible games, PG,

6= 650
6= 650
6= 650

e Agents believe the true Markov Game lies within PG w.h.p.




Plausible Games

* [o deal with dataset uncertainty, robust learners create a set of PG

plausible games, PG,

6= 650
6= 650
6= 650

e Agents believe the true Markov Game lies within PG w.h.p.

e txample: Confidence Bounded Learners (CBL) assume that
CI(s,a) = { R(s,0) € [=b,b] | | R(s,@) = Ris,@)| < p(s,0) }
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Assumption: the policy & the agents learn Is a solution to one of the games in PG.
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e Rewards must lie in the natural range [—b, b].

Data may be scarce (Low

Data Coverage).
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4x 10X T = (2’2)
Can never be learned
-b, -b for certain learners!
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D ominance

he dominance equation ensures & Is a strict MPDSE for any game with Q-function Q:

Qz‘jﬁ(S, (71';(5), a;) > Qiﬁ(s’ (@, a) Vs,.a_;q

e MPDSE Is equivalent to forcing a DSE In each stage game.

e Bolls down to Optimal Game Design.
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Attackers Strategy

o Force z' to be a MPDSE in every plausible game.

e Ensures robust rational agents learn z" by assumption.

e letPO={0 |0 = Qg, G € PG} be the set of plausible Q:s.

e Attacker needs dominance to hold forall O € PQ.
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s - — . . - T/ — *’* — |
Sufficient condition: ensure domination between the extreme Q-functions,

Q?T(S, (7 (s),a_y) > 07 (s.(aja_)) Vs.i.a_q;

Where, the Q’s are the point-wise extremes:

i . i
Q" (s,a) = min Qg (s, a)
T c

Q7 (s,a) = max g (s, a)
c
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LInear Programming

* [he Extreme Dominance Constraint is linear.
e For CBL, the extreme Q-functions are defined by linear inequalrities.

* [his extends the previous ideas about games to datasets.

S = — — P ——— —__— -l

1 The attacker can e'”f‘oent\y compute minimum cost atta ks
| usl ng a Lmear Program
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Theorem: Poisoning CBL Is feasible If the following condition holds:

1 < 2b— (H + l)pf(s,a), Vhel|lH|],se S,aeA

VWhat does this mean!?
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Corollary: Poisoning CBL s feasible if the following condition holds:
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Coverage Requirements

Feasibility through

Corollary: Poisoning CBL s feasible if the following condition holds:

4b2(H+1)210g((H\S\ \A\)/a)

N,(s,a) > = Q(H?).

(219 — 1)2

o This implies:
[Tes,if given enough datal] |5 p5gy
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: 55 2,2 | 2359 | 35 -2,6 , |O8
POISOH 33I - | 86 7,7 2222 8022
VS

| 5,5(-2,2 | 2,-3 -5,9 | 3,5 -2,6 | -1 0,8
Poison + Polison + Polison + Polison
3,-31,-1 8,6 /, 7/ 2,-212, -2 8,0 2,-2

*Poisoning is not separable over stage games.
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Cost Lower-bounds

A1/ Az 1 2 |...| |Az2] A1/ A2 1 2
T | —b,—b|—bb|..|—b,b 1 b, b b,b—2p—1
> | 5,—b | b,b |...| bb » 2 [5—2p—1,b|b—2p—1,b—2p—1
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Optimal Attack Cost:
H|S|min N,(s,a)| A" 2b + 2p + 1)

h,s,a
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[ he Roles of p

pP T the uncertainty In transrtion Is high,
H
C(D) = ), C(Dy)
i=1
pR T the uncertainty in reward is low,

H
C(D) < Z C(Dy)
i=1

;» The optimal cost could potentially be greater than optimally poisoning 16
“ each subdataset!
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Summary

* |n large datasets, poisoning Is always feasible, though

e [hus, we lllustrate the need for provable defenses against offline reward poisoning.



