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• Agents use the shared data to compute a joint policy .π
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• Extension of MDPs to the multi-agent setting.

• Think of: MDP with a game-reward matrix at each state.
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on actions of all 
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Solution Concepts

• Solution to a game takes form of an Equilibrium.

• Examples: NE, DSE, CCE
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Rationality

Key Fact: Rational agents always play the MPDSE if it exists.

• Simplest assumption on rationality: no agent takes a strictly dominated action, 
.Qi(s, (ai, a−i)) < Qi(s, (a′￼i, a−i))

• Strict Markov Perfect Dominant Strategy Equilibrium (MPDSE) is the 
corresponding equilibrium concept.
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Plausible Games

• To deal with dataset uncertainty, robust learners create a set of 
plausible games, PG.

• Agents believe the true Markov Game lies within PG w.h.p.

• Example: Confidence Bounded Learners (CBL) assume that 
.CIR

i (s, a) = {Ri(s, a) ∈ [−b, b] ∣ |Ri(s, a) − R̂i(s, a) | ≤ ρR(s, a)}

PG
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Assumption: the policy  the agents learn is a solution to one of the games in PG.π

Sol( ) = π Sol( ) π=
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Attack Goal
Attacker wants .π = π†

• Attacker can change the rewards appearing in the dataset at some cost.

• Attacker wants to minimize its cost, usually the  norm: .L1 | |r0 − r† | |1

min
r†

| |r0 − r† | |1

The Attack Problem:

s.t.  is learned from π† r†
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Bottlenecks
• Rewards must lie in the natural range .[−b, b]

• Data may be scarce (Low Data Coverage).

π† = (2,2)
Can never be learned 
for certain learners!

What can the Attacker do?
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Bandit Games
A bandit game is a single normal form game ( ).S = H = 1
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To ensure  is learned, suffices to make it a strict DSE.π† = (1,1)
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1-𝜀, 1 1-𝜀, 1-𝜀

Can formulate an LP to compute optimal cost attacks:

Ri(π†
i , a−i) ≥ Ri(ai, a−i) + ϵ ∀i, ai ≠ π†

i , a−i
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Dominance

Qπ†

i (s, (π†
i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

The dominance equation ensures  is a strict MPDSE for any game with Q-function :π Q

• MPDSE is equivalent to forcing a DSE in each stage game.

• Boils down to Optimal Game Design.
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Attacker’s Strategy

• Force  to be a MPDSE in every plausible game.π†

• Ensures robust rational agents learn  by assumption.π†

• Let  be the set of plausible Qs.PQ = {Q ∣ Q = Qπ†

G , G ∈ PG}

• Attacker needs dominance to hold for all .Q ∈ PQ
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Complications

PQ alone could be difficult to characterize or compute!

Instead, focus on nice supersets of PQ.
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Extreme Dominance

Qπ†

i
(s, (π†

i (s), a−i)) > Qπ†

i (s, (a′￼i, a−i)) ∀s, i, a−i, a′￼i

Sufficient condition: ensure domination between the extreme Q-functions,

Where, the Q’s are the point-wise extremes:

Qπ†

i
(s, a) = min

G∈PG
Qπ†

G,i(s, a)

Qπ†

i (s, a) = max
G∈PG

Qπ†

G,i(s, a)
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Linear Programming

• The Extreme Dominance Constraint is linear.

• For CBL, the extreme Q-functions are defined by linear inequalities. 

• This extends the previous ideas about games to datasets.

The attacker can efficiently compute minimum cost attacks 
using a Linear Program
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Feasibility

ι ≤ 2b − (H + 1) ρR
h (s, a), ∀ h ∈ [H], s ∈ S, a ∈ A

Theorem: Poisoning CBL is feasible if the following condition holds:

What does this mean?

Can the attacker make any  a MPDSE?π†
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Coverage Requirements

Corollary: Poisoning CBL is feasible if the following condition holds:

Nh(s, a) ≥
4b2 (H + 1)2 log ((H S A )/δ)

(2b − ι)2 = Ω̃(H2) .

This implies: 
.K ≥ H3SA

Feasibility through data coverage.

Yes, if given enough data!
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1, -1 0, 8

8, 0 2, -2( )Poison

-5, 5 -2, 2

3, -3 1, -1( )Poison
2, -3 -5, 9

8, 6 7, 7 )(Poison
-3, 5 -2, 6

2, -2 2, -2 )(Poison
1, -1 0, 8

8, 0 2, -2 )(Poison++ +

*Poisoning is not separable over stage games.
Can exactly characterize!
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Cost Bounds on Optimal Data Poisoning are derived through Bandit Data Poisoning.
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Cost Lower-bounds

Optimal Attack Cost:

H |S | min
h,s,a

Nh(s, a) |A |n−1 (2b + 2ρ + ι)

Before Attack After Attack

Exponential dependency on n!
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The Roles of ρ

ρP If the uncertainty in transition is high,

C(D) ≥
H

∑
i=1

C(Dh)

ρR If the uncertainty in reward is low,

C(D) ≤
H

∑
i=1

C(Dh)

The optimal cost could potentially be greater than optimally poisoning 
each subdataset!
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Summary

• In large datasets, poisoning is always feasible, though costly.

• Thus, we illustrate the need for provable defenses against offline reward poisoning.


