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My topics are buggy!

!@#$ in top words

duplicate documents?

clean up, save the day
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But what if it is intentional?

real people use LDA

attacker wants them to see !@#$

I to influence their decision
I to profit financially and politically

data poisoning attack

I attacker can modify the corpus
I but not the LDA code
I prefers small modifications
I user runs vanilla LDA on poisoned corpus, sees planted topics

our paper shows how the attacker may do so optimally
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Latent Dirichlet allocation

ψ1 . . . ψk ∼ Dir(β)

θ1 . . . θn ∼ Dir(α)

zdi ∼ θd

wdi ∼ ψzdi
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Using LDA

The user: (without attack)

I receives corpus W
I runs off-the-shelf LDA and gets ψ̂ |W
I under the hood: ψ̂ = argmax p(ψ |W,α, β), variational or MCMC
I stares at top words in ψ̂1 . . . ψ̂k
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Data poisoning attack on LDA

The attacker:

I has target topics ψ∗ in mind
I example: ψ∗

1,!@#$
← 9max(ψ̂1,1 . . . ψ̂1,v), renormalize ψ∗

1

I changes W to W̃ so that
(
ψ̂ | W̃

)
≈ ψ∗

I gives W̃ to the user

The user:

I runs off-the-shelf LDA and gets ψ̂ | W̃
I stares at top words in ψ̂1 . . . ψ̂k and sees !@#$ in topic 1
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Formulating the attack

min
W̃ ,ψ̂

‖ψ∗ − ψ̂‖2ε

s.t. ψ̂ = argmax p(ψ | W̃ , α, β)

W̃ ≥ 0

‖W̃ −W‖1 ≤ L

W̃ : doc-word count matrix, relaxed to real
L: attack budget
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How come there is optimization in the constraint?

min
W̃ ,ψ̂

‖ψ∗ − ψ̂‖2ε

s.t. ψ̂ = argmax p(ψ | W̃ , α, β)

W̃ ≥ 0

‖W̃ −W‖1 ≤ L

bilevel optimization (Stackelberg game)

hard
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KKT conditions to the rescue

Replace the lower problem ...

min
W̃ ,ψ̂

‖ψ∗ − ψ̂‖2ε

s.t. ψ̂ = argmax p(ψ | W̃ , α, β)

W̃ ≥ 0

‖W̃ −W‖1 ≤ L
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KKT conditions to the rescue
... with its KKT conditions (variational approximation)

min
W̃ ,ψ̂

‖ψ∗ − ψ̂‖2ε

s.t. ηkv − β −
∑
d

φdvkmdv = 0

γdk − α−
∑
v

φdvkmdv = 0

φdvk −
exp(Ψ(γdk) + (Ψ(ηkv)−Ψ(

∑
v′ ηkv)))∑

k exp(Ψ(γdk) + (Ψ(ηkv)−Ψ(
∑

v′ ηkv′)))
= 0

W̃ ≥ 0

‖W̃ −W‖1 ≤ L

nonlinear constraints, but single level optimization

gradient descent
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Let’s pretend to be the attacker

Promote “marijuana” to top-10 in this topic:
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Can demote words, too
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Isn’t word-based attack easy to detect?

Can attack by adding / removing sentences

goal: move “president” to another topic

⇒
after attack
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What can I do to protect LDA?

protect your corpus

inspect docs with large “suspicious topic” proportion θd,k

adversarial classification [Li Vorobeychik AISTATS’15]
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I don’t care about LDA

Data poisoning attack can happen to any learner

1900 1920 1940 1960 1980 2000
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140

YEAR

IC
E

 D
A

Y
S

 

 

original, β
1
=−0.1

min
y∈Rn,β̂∈R2

‖y − y0‖p small modifications

s.t. β̂ = min
β∈R2

‖y −Xβ‖2

β̂1 ≥ 0 attack goal: nonnegative slope
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Attacking linear regression, 2-norm
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original, β
1
=−0.1

2−norm attack, β
1
=0

min
y∈Rn,β̂∈R2

‖y − y0‖2

s.t. β̂ = min
β∈R2

‖y −Xβ‖2

β̂1 ≥ 0
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Attacking linear regression, 1-norm
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Data poisoning attack on any learner

min
D,θ̂

d1(θ̂, θ∗) + d2(D,D0) attacker’s problem

s.t. θ̂ = argmin
θ∈Θ

1

|D|
∑
zi∈D

`(zi, θ) + Ω(θ) learner’s problem

Attack linear regression, logistic regression, SVM [Mei Zhu AAAI’15]
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I don’t care about attacks, either

How about education?

min
D,θ̂

d1(θ̂, θ∗) + ‖D‖0 teacher finding optimal lesson D

s.t. θ̂ = argmin
θ∈Θ

1

|D|
∑
zi∈D

`(zi, θ) + Ω(θ) student’s cognitive model

Human categorization [PZKB NIPS’14, Zhu AAAI’15]

human trained on human test accuracy

optimal lesson D 72.5%
iid 69.8%

(statistically significant)
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This whole thing doesn’t look like machine learning

It is not.
We call it machine teaching.
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Example one

The student runs a linear SVM:

Given a training set with n items xi ∈ Rd, yi ∈ {−1, 1}

student learns w ∈ Rd

The teacher wants to teach a target w∗

x>w∗ = 0

What is the smallest training set the teacher can construct?
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Example one

Teacher’s non-iid training set with n = 2 items
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Example two

The student estimates a Gaussian density:

Given x1 . . .xn ∈ Rd

Steve learns µ̂ =
1

n

∑
xi, Σ̂ =

1

n− 1

∑
(xi − µ̂)(xi − µ̂)>

The teacher wants to teach a target Gaussian with (µ∗,Σ∗)
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Example two

Teacher’s minimal training set: n = d+ 1 tetrahedron vertices
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Machine teaching is stronger than active learning

θ θ

O(1/2 )
n

θ

{{
O(1/n)

passive learning "waits" active learning "explores" teaching "guides"

Sample complexity to achieve ε error

passive learning 1/ε

active learning log(1/ε)

machine teaching 2: the teacher knows θ
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Machine teaching

teacher knows the learning algorithm

teacher has a target model

teacher constructs the smallest training set (Teaching Dimension [Goldman

Kearns 1995])

applications in education and security

many open problems in optimization and theory

References:
http://pages.cs.wisc.edu/~jerryzhu/machineteaching/
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Thank you
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