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Abstract
Forecasting models play a key role in money-making
ventures in many different markets. Such models are of-
ten trained on data from various sources, some of which
may be untrustworthy. An actor in a given market may
be incentivised to drive predictions in a certain direction
to their own benefit. Prior analyses of intelligent adver-
saries in a machine-learning context have focused on re-
gression and classification. In this paper we address the
non-iid setting of time series forecasting. We consider
a forecaster, Bob, using a fixed, known model and a re-
cursive forecasting method. An adversary, Alice, aims
to pull Bob’s forecasts toward her desired target series,
and may exercise limited influence on the initial val-
ues fed into Bob’s model. We consider the class of lin-
ear autoregressive models, and a flexible framework of
encoding Alice’s desires and constraints. We describe
a method of calculating Alice’s optimal attack that is
computationally tractable, and empirically demonstrate
its effectiveness compared to random and greedy base-
lines on synthetic and real-world time series data. We
conclude by discussing defensive strategies in the face
of Alice-like adversaries.

Introduction
Forecasting is important in a variety of markets including
commodities, energy, new products and others. For example
in commodity markets, forecasting volatility is the basis for
the pricing of options contracts. In general, high volatility
forecasts result in higher prices for options. Better forecasts
result in better returns.

A standard assumption in forecasting is that data used in
models is reported honestly i.e., in a way that does not seek
to influence the outcome. However, this may not be the case.
Indeed, one can easily imagine an actor with a profit motive
and access to inputs that will attempt to influence outcomes
to her own advantage.

In this paper we consider linear, autoregressive forecast-
ing models. The forecaster Bob uses an order-d linear au-
toregressive model: xt = α+

∑d
i=1 θi(xt−i), and forecasts

h future values with a recursive strategy. We illustrate the
concecpts described herein with a running “One Week” ex-
ample where Bob uses an order 2 AR process to forecast
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h = 3 days into the future. Specifically, Bob uses the values
of Monday and Tuesday to forecast Wednesday, Thursday,
and Friday with model θθθ = [0.5,−0.6]>. Thus, for the One
Week example, if Monday’s value is 1 and Tuesday’s is 2,
Bob forecasts Wednesday as 0.5 × 2 − 0.6 × 1 = 0.4, he
then forecasts Thursday as 0.5 × 0.4 − 0.6 × 2 = −1, and
Friday as 0.5× (−1)− 0.6× 0.4 = −.74.

With a linear AR model and recursive forecasting strategy,
Bob is especially vulnerable to intelligent adversaries – once
Alice has observed enough sequential forecasts, she can in-
fer the underlying model exactly given minimal additional
information. If Alice observes Bob forecast 0.4,−1,−.74,
and she knows that Tuesday’s value is 2, then she only need
know d = 2 to deduce Bob’s model.

Our specific contributions are as follows. (i) We present a
general, mathematical framework for defining Alice’s opti-
mal attack. (ii) We demonstrate how real world settings may
be encoded into our framework such that the resulting op-
timization problem is solvable with standard convex opti-
mization methods. (iii) We empirically demonstrate the ef-
fectiveness of the optimal attack, compared to random and
greedy baselines using both synthetic and real world data.

Mathematical Formulation
We use boldface lowercase letters to denote column vectors,
and capital letters to denote matrices. We denote element-
wise inequalities with �,�, and equality by definition as ,.
Elements of a vector vvv are vi. Bob’s first prediction is for
time 0, and xi, i < 0 denote past values. For ease of nota-
tion, we ignore the offset term α to obtain the AR(d) model,
standard in time series analysis literature (Box, Jenkins, and
Reinsel 2011). We note, however, that the methods describe
here directly extend to including α.

Alice’s objective is to move Bob’s forecasts as close as
possible to her desired target ttt ∈ Rh. Alice’s actions are
to augment the initial values, xxx, fed into Bob’s model, by
selecting a vector δδδ = [δ−d, . . . , δ−1]

> and augmenting
x−i ← x−i + δ−i. She may have restrictions and a cost
function over the space from which she selects δδδ. We denote
Bob’s predictions, after Alice has poisoned the initial values,
as t̂ttδδδ .

Consider again the One Week example. Alice will
augment Monday and Tuesday’s by selecting a vector



[δMonday, δTuesday]
> so as to bring the values for the rest of

the week closer to her target [tWednesday, tThursday, tFriday]
>.

We consider a powerful attacker. Namely, Alice observes
all x−d, . . . x−1 before selecting her attack. This assump-
tion is applicable in settings where Alice is “cooking the
books” and may misreport past values. Another canonical
real-world setting is where Alice is constrained to determine
her attack sequentially. That is, she must select δ−d on day
−d, before observing x−d+1, . . . , x−1. We leave this setting
as future work, and note that Alice is weaker in the later case
– her best online attack is bounded by her optimal attack in
the setting presented herein.

To formally state Alice’s optimal attack, we first intro-
duce the following notation. Let the (h × 1) vector xxxk
be the last h values of the time series ending at time k:
xxxk = [xk−(h−1), . . . , xk]

>. When k < h − d, we zero-pad
the front of xxxk. We assume h ≥ d without loss of generality.
If d > h, we may artificially increase the forecast horizon to
d, and encode the fact that Alice does not care about the in-
flated portion of the horizon into her loss function. We then
define the h × h one-step matrix S and the h × d matrix Z
to zero-pad δδδ:

S ,

 Ih−1×h−1000h

000>(h−d−1)×1
←−
θθθ >

 , Z ,

[
0(h−d)×d
Id×d

]
(1)

where
←−
θθθ > , [θd, . . . , θ1]. We note that xxxk = Sxxxk−1. In

particular, xxxh−1 = Shxxx−1. Therefore the augmented fore-
cast is t̂ttδδδ = Sh (xxx−1 + Zδδδ).

We may now formally state Alice’s optimal attack:
δδδ∗ , argmin

δδδ
||̂tttδδδ − ttt||` + ||δδδ||e (2)

= ||Sh (xxx−1 + Zδδδ)− ttt||` + ||δδδ||e (3)
s.t. ||δδδ||c � β (4)

where || · ||l defines Alice’s loss function, || · ||e defines her
effort function, and || · ||c (along with her budget β) defines
the feasible region of her attacks.

Described above is called an attractive attack (attract the
prediction to a specific target ttt). Approaches similar to those
described here can be used to determine the optimal repul-
sive attack, where Alice tries to drive Bob’s forecast as far as
possible from his original forecast (or from a reference point
specified by Alice). For reasons of brevity we do not discuss
repulsive attacks here.

Attack Achievability
We note that Alice’s target ttt may not be achievable given
Bob’s autoregressive model. In the One Week example, the
target ttt = [1, 10, 10] is unachievable given Bob’s model;
0.5 × 10 − 0.6 × 1 = 4.4 6= 10. For a fixed horizon h, we
let A(θθθ) denote the set of all acheivable targets:
A(θθθ) , {ttt ∈ Rh | ∃ xxx = x−d, . . . , xh−1 where

xi =

d∑
j=1

θjxi−j and ti = xi for i = 0, . . . , h− 1}

(5)

We denote the closest achievable point to Alice’s target ttt as:
ttt∗ , arg min

t̂tt∈A(θθθ)
||̂ttt− ttt||` (6)

We call ||ttt∗ − ttt||` Alice’s disappointment, similar to the no-
tion of approximation error in learning theory (Mohri, Ros-
tamizadeh, and Talwalkar 2012).

We now describe several real-world attack scenarios. We
formulate each with our framework via instantiations of || ·
||`, || · ||e and || · ||c for which the resulting optimization
problem is convex and solvable with standard methods.

A Quadratic Loss Function for Alice

We first examine the case that Alice has hard constraints,
and all available attacks have equal effort (|| · ||e , 0). We
consider the Mahalanobis norm for Alice’s loss: ||vvv||` ,
||vvv||2W = vvv>Wvvv, where W is a symmetric, positive semi-
definite matrix defining Alice’s priorities over different up-
coming timesteps. If, for example, W =

√
diag(www), where

www � 0, then wi is the relative weight of how much Al-
ice cares about t̂i − ti. In the One Week example, W =
diag([1, 1,

√
2]>) would indicate that Alice cares twice as

much about Friday’s value as she does about the other days.
Note that if d > h, we may inflate the horizon as described
previously, and append d − h all-zero rows and columns to
W to encode that Alice does not care about the inflated por-
tion1.

We consider this norm for two reasons. First, it is flexible
enough to capture many real-world scenarios, as weighted
mean squared error is a common evaluation for forecasting
performance. Second is its mathematical convenience. Un-
der the settings with ||·||` = ||·||2W , ||·||e = 0, we may write
Alice’s goal as a standard quadratic minimization problem.
She seeks to minimize:

F (δδδ) , ||Sh (xxx−1 + Zδδδ)− ttt||2W (7)

=
1

2
δδδ>Qδδδ + ccc>δδδ (8)

where:
Q ,

(
ShZ

)>
W
(
ShZ

)
(9)

ccc , Z>
(
Sh
)>
W>Shxxx−1 − Z>

(
Sh
)>
W>ttt (10)

This can be seen by a simple calculation:

F (δδδ) =
(
Sh (xxx−1 + Zδδδ)− ttt

)>
W
(
Sh (xxx−1 + Zδδδ)− ttt

)
=2
(
Shxxx−1

)>
W
(
ShZδδδ

)
+
(
ShZδδδ

)>
W
(
Shxxx−1

)
− 2 ttt>WShZδδδ

+
(
Shxxx−1

)>
W
(
Shxxx−1

)︸ ︷︷ ︸
Independent of δδδ

− 2 ttt>WShxxx−1 + ttt>Wttt︸ ︷︷ ︸
Independent of δδδ

(11)

1To accommodate an offset term α we append an all-0 row S,
followed by appending the column [0, . . . , 0, α, 1]>. We then ap-
pend a 1 to ttt, an all-0 row to Z, and an all-0 row and column toW .



Alice’s Constraints
Given no constraints or efforts to her attack, Alice can al-
ways drive Bob’s forecast to ttt∗ by setting δi = x∗i − xi
where xxx∗ is the xxx which achieves ttt∗ in (5). In reality, Alice
often has constraints in poisoning the data. We first examine
the case of hard constraints, where Alice has strict bounds
on what attack vectors are available. We then consider the
“soft constraint” case, where Alice must pay a cost based on
the magnitude of her attack.

For the hard constraints presented below, we phrase the
resulting minimization problem as a quadratic program in
standard form:

δδδ∗ = argmin
δδδ

1

2
δδδ>Qδδδ + ccc>δδδ (12)

s.t. Gδδδ � hhh (13)
Per-Step Budget: Consider the case where Bob is fore-

casting the number of visits to a web site for use in determin-
ing ad placement. For concreteness, assume Bob uses total
daily page visits in his model (one time step is one day).
Alice is a hacker, controlling a botnet (a collection of com-
puters on the Internet which she can take limited control of).
She uses her botnet to create fraudulent traffic, and aims to
affect Bob’s predictions of web traffic.

Alice acts under two main constraints: (i) on any given
day, Alice’s botnet may only create up to β false page visits
(based on the number of computers she has infected), and
(ii) Alice may not remove legitimate traffic. This yields the
constraints 0 ≤ δi ≤ β, or

||δδδ||c =
{||δδδ||∞ if δδδ � 0

∞ otherwise
(14)

in (4). We encode such constraints into (13) via

G =

[
Id
−Id

]
,hhh =

[
111d×1β
000d×1

]
(15)

where Id is the d × d identity matrix, and 000 is the all-zero
vector.

Total Budget: In futures markets, actors bet on the fu-
ture price of a commodity. With some details ignored, we
illustrate the mechanics of futures markets with the follow-
ing example. Charlotte and David meet on e.g., September
18 to discuss the price of natural gas. They settle on a price
x (dollars per 100 cubic feet (Ccf)), and a quantity (q Ccf).
One week later, on September 25, the market price of natural
gas will be y dollars per Ccf (however, y is unknown on the
3rd). They both sign a contract saying that on September 25,
Charlotte will pay David qy− qx dollars, where David pays
Charlotte if qy − qx is negative.

In this example, Charlotte benefits from the future price
y being low, and David benefits from y being high – they
both have an incentive to accurately forecast gas prices. Fur-
thermore, they both have an incentive for the other party’s
forecasts to be wrong. We consider the case where one mar-
ket participant, Alice, aims to alter the forecasts of others
so as to improve the deals she makes with them. Alice may
take the roll of either Charlotte or David in the natural gas
example. She corrupts the past values (e.g., amounts of fuel
stored or apparent demand) fed into the other party’s fore-
casting model.

If Alice is bound by a per-step budget, she may find her
optimal attack as she did in the botnet example above. We
consider the case where Alice has some store of β of the
commodity, and may use it to artificially inflate (but not de-
flate) past values. This induces the constraint

∑
i δi ≤ β

and the non-negativity constraints δδδ � 000. We encode such
constraints into (13) via

G =

[
111>d×1
−Id

]
,hhh =

[
βββ

000d×1

]
(16)

where 111 is the all-ones vector.
Soft Constraints: We now consider the following exam-

ple, where Alice is a participant on the wholesale electricity
market. Alice runs a paper mill, and Bob forecasts electric-
ity usage. Alice can artificially raise (by turning on heaters2)
or lower (by reducing paper production) her daily electric-
ity usage, but must pay to do so (either for the electricity, or
from the lost revenue). For simplicity we assume lowering
usage by 1KWh costs as much as raising by 1KWh, but note
that Alice’s cost is non-linear. While in reality Alice’s cost
function may be quite complicated, we may approximate it
as quadratic.

We generalize this to the non-linear effort function ||·||e ,
λ||δδδ||2HHH = δδδ>Hδδδ, where λ is a fixed scalar determining the
weight of Alices cost, and H is a positive semi-definite ma-
trix defining Alice’s costs (similar to how W defines the
weights on forecasts). This yields the unconstrained mini-
mization problem:

δδδ∗ = argmin
δδδ

1

2
δδδ>Qδδδ + ccc>δδδ + λδδδ>Hδδδ (17)

with optimal solution
δδδ = − (Q+ 2λH)

−1
ccc (18)

= −
(((

ShZ
)>
W
(
ShZ

))
+ 2λH

)−1
(
Z>

(
Sh
)>
W>Shxxx−1 − Z>

(
Sh
)>
W>ttt

)
(19)

Experiments
We investigate the capabilities of an attacker through empir-
ical experiments first on synthetic, and then on real world
data.

We compare Alice’s optimal attack against two base-
lines: Random and Greedy. Random selects 100 attacks
δδδ1, . . . , δδδ100 and evaluates F on each, selecting the mini-
mum. We note that as the number of attacks Random takes
increases, its performance approaches optimal. Greedy first
minimizes F as a function of only δ−1. That is, Greedy fixes
x−d, . . . , x−2 and attacks only x−1. We note that this is a
mathematically simpler task, as the objective function is now
univariate. After finding the optimal δ−1, Greedy continues,
attacking only x−2 while fixing x−d, . . . , x−3, x−1 + δ−1,
and so on.

Greedy selects this particular ordering due to the follow-
ing observation. The value δ−d directly affects only the fore-
cast for time 0 (it indirectly affects the forecasts for future
times). The value δ−1, however, directly affects forecasts for

2http://www.nytimes.com/2012/09/24/technology/data-
centers-in-rural-washington-state-gobble-power.html
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Figure 1: 1,000 Attacks on Four Models. Each row corre-
sponds to one model, for which we consider 1,000 attack
target vectors. In the first three columns, we show the distri-
bution of difference between the attack’s effectiveness and
Alice’s disappointment (||̂ttt − ttt∗||2W )) (lower is better) for
each attacker. White (solid) lines denote the mean value ,
and black (dashed) lines show the median. The right most
column shows the value of the best, achievable target.

time 0 through d − 1. Greedy begins by poisoning values
with the most direct effect, proceeding to those with less di-
rect effect.

In practice, when learning a time series model, it is com-
mon to restrict the set of models considered to only those
which are weakly stationary. A model is weakly stationary
if its first moment and covariance do not vary in time, which
for AR(d) processes is equivalent to the roots of the polyno-
mial zd−∑d

i=1 θiz
d−i all lying within the unit circle on the

complex plane. All models used in experiments on synthetic
data, below, are weakly stationary. We use such models due
to their prevalence in practice, but note that the methods do
not assume stationarity, and work for general models.

Experiments were conducted using the optimization pack-
age cvxopt v1.1.7 (Dahl and Vandenberghe 2006), figures
were made with Matplotlib v1.4.3 (Hunter 2007). Due to
space limitations we describe the results of experiments only
in the hard-constraint settings.

Synthetic Data
We empirically investigate the following question: How ef-
fective is Alice’s attack as a function of her target and
Bob’s model? We begin by creating four different mod-
els θθθ(1), . . . , θθθ(4), and evaluating an attacker’s effectiveness
for various targets. Specifically, let d = 5 and draw θθθ(i)

from a unit spherical GaussianN (000, I), using rejection sam-

pling to ensure the models are weakly stationary 3. For each
model, we let h = 7 and select n = 1, 000 target vectors
by sampling each value iid from N (0, 1). We then gener-
ate initial values x−d, . . . , x−1 by beginning with Gaussian
white noise and drawing values from the random process
xt =

∑d
i=1 θixt−i + ωi where ωi

iid∼ N(0, 1)4. We sim-
ulate the per-step budget setting and constrain the attacker
by: −β ≤ δi ≤ β = 1/3. We let W = I , yielding
|| · ||2W , || · ||22.

For each attacker, we report the empirical distribution
of their loss compared to the best achievable target: ||̂tttδδδ −
ttt||2W − ||ttt∗ − ttt||2W . In addition, we report the distribution of
||ttt∗ − ttt||2W . Figure (1) shows the results in violin plots.

For display purposes, we have cut off the y-axis at the 95th

percentile – the additional remaining values create long tails.
We first notice that across the four models, ||ttt∗−ttt||2W shows
a consistent distribution. This is as expected, as a priori no
model should lead to more achievable targets than any other.
Interestingly, the shape of the other distributions (in partic-
ular Greedy and Optimal) vary from model to model. We
then note that the performance between greedy and random
is mixed – Greedy tends to win under θθθ(2), Random under
θθθ(1), and it is unclear under the other models. While optimal
attack always outperforms the baselines (by nature of being
optimal), the amount by which it does so varies by model.
In fact, it is unclear that Alice obtains significant gains by
using the optimal attack over the baselines.

To further investigate this, we perform an additional ex-
periment, this time varying over many different models. We
perform the following process for i = 1, . . . , 1000: (1) Draw
θθθ(i) from N (000, I). (2) Generate x−d, . . . , x−1 as before. (3)
Draw ttt fromN (000, I). (4) Evaluate the different attack meth-
ods. (5) Consider the bottom 95% so as to avoid the long tail.

This is similar to the previous experiment, but expanding
in breadth instead of depth in terms of models. That is, in this
experiment, we are using 1,000 different models for Bob,
and testing one attack on each, whereas previously we used
4 models and tested 1,000 attacks against each. Figure (2)
shows the results as a violin plot, where we have left a large
portion of the tail depicted for illustrative purposes. Here we
observe that Greedy does outperform Random in terms of
mean (the solid white line) and median (dashed black line),
but only slightly. We remind the reader that if Random were
to try more attacks, it would approach optimal in the limit.
By expanding the breadth of the models in this way, we also
see that both Random and Greedy are significantly inferior
to the optimal attack.

Real World Example: Futures Markets
We next illustrate the effects of Alice’s attack in a more de-
tailed evaluation of real-world data. We consider two attack-
ers, aiming to change the forecast market value of natural

3Due to the many random vectors and matrices created from
them, numerical precision is a concern. To insure accuracy, we
bound the condition number of matrices in (3), removing the oc-
casional numerically unstable result.

4We use the values after a 500 step burn-in period.
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Figure 2: 1,0000 Attacks on 1,000 Models. Each column
shows the distribution of F (δδδ), similar to Figure (1).

gas. The first attacker, Alice High, aims to increase the fore-
cast, whereas the second attacker, Alice Low, aims to lower
the forecast.

We obtained5 historical US natural gas prices for 2014.
After centering the series, we learned an order d = 5
AR model via Yule-Walker estimation (Box, Jenkins, and
Reinsel 2011). We let h = 10, and assume the attack-
ers are aiming for two spikes/dips with value ±0.15, one
on the 5th day and one on the 10th, with relatively low
(in absolute value) values elsewhere. We encode this as
ttt = [0, 0, 0, 0, 0.15, 0, 0, 0, 0, 0.15]> for Alice High, and its
negative for Alice Low. To encode the fact that the attackers
care more about the spike/dip days than the others, we letW
be the diagonal matrix where wi,i = 0.1 if i 6∈ {0, 9}, and
1.0 otherwise. We constrain both Alices with a modest total
budget of β = 0.1, and impose non-negativity constraints on
δδδ.

Figure (3) shows the results. The most striking feature is
that Alice High’s attack is hugely effective for both spikes,
and Alice Low’s is for the second dip, albeit less so for the
first dip. We further note that Alice Low’s attack differs con-
siderably more from the corresponding ttt∗ than Alice High’s.
While Alice’s attacks do not closely follow the target series,
recall that Alice has heavily down-weighted the predictions
for the non-spike/dip times. This setting also demonstrates
how the effectiveness of attacks depends largely on the at-
tacker’s constraints. Note that Alice Low is unable to achieve
the first dip, but the corresponding ttt∗ does. This means
that there is an attack leading to a better result, but Alice’s
constraints prevent her from selecting it. In contrast, Alice
High’s attack results in a t̂tt very close to the best achievable
forecast for her target.

Defense Analysis
A future goal of this line of research is to create forecasting
models robust to the attacks of intelligent adversaries. To
this end, we now explore how Alice’s effectiveness varies
with her constraints. This is motivated by the fact that in the
real world, Bob may have the ability to further restrict Alice
by e.g., imposing harsher (for example, legal) punishments
should she be caught or by more diligently inspecting her

5Data is publicly available from http://www.quandl.com,
Quandl Code CME/NGF2015.
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Figure 3: Natural Gas Settle Price. The top plot shows the
US natural gas settle price. The bottom shows the results
of two attackers. Alice High aims to cause two peaks, and
Alice Low aims to cause two dips. Each has a total bud-
get of β = 0.1, and non-negativity constraints. Downward
triangles denote Alice Low’s alterations, Upward triangles
denote Alice High’s.

behavior. We return to the natural gas example, but with a
variety of different targets. So as to allow Greedy to partici-
pate, we now constrain the attacker via a per-step budget. We
do not impose non-negativity constraints. We examine Alice
(performing an optimal attack), Greedy, and Random’s ef-
fectiveness as a function of β.

Figure 4 shows the results. When the attacker is highly
unconstrained, Greedy is suboptimal, but still quite close to
optimal. We posit that with relaxed constraints, Greedy has
more potential for causing harm when selecting early values
which cannot be healed by later alterations. As Alice be-
comes more constrained Greedy approaches the optimal at-
tack. We further note that Random’s performance increases,
relative to Optimal, as the constrains become more restric-
tive. This is expected, as Random has a better chance of find-
ing a high quality attack when the sample space is small. Fi-
nally, all attackers converge as β → 0; when β = 0, the only
available option is δδδ = 000.

Related Work
The security ramifications of using machine learning mod-
els have long been studied (Barreno et al. 2006; 2010;
Dalvi et al. 2004; Laskov and Kloft 2009; Tan, Killourhy,
and Maxion 2002). Much of the work has focused on the
common settings of regression and classification, although
recent work has also looked at the security of LDA (Mei
and Zhu 2015a). Attacks come in two forms: poisoning the
training data of a learner, and attacking an already-learned
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Figure 4: Effectiveness as a Function of Budget. We eval-
uate the effectiveness of various attackers against the natural
gas prices presented in Figure (3). Dashed lines show the
25th and 75th percentiles over 1,000 trails (each with a dif-
ferent target).

model.
The former case has been studied in depth for a variety of

learning algorithms. Support vector machines, in particular,
have received a great deal of attention (Biggio and Laskov
2012; Biggio et al. 2014; Xiao et al. 2014; Xiao, Xiao, and
Eckert 2012). A somewhat orthogonal line of research has
posed the problem of learning in the presence of adver-
saries in a game theoretic context (Liu and Chawla 2009;
Brückner, Kanzow, and Scheffer 2012; Dalvi et al. 2004;
Brückner and Scheffer 2009; 2011). In addition, adversar-
ial learning has been put into the framework of machine
teaching (Zhu 2015). Using this, a general framework for
data poisoning attacks against learners was recently pro-
posed (Mei and Zhu 2015b), which mirrors our own.

The latter case, of attacking a fixed model, has also re-
ceived considerable attention. One canonical example is in
the realm of spam detection (c.f., (Nelson et al. 2009) and
(Lowd and Meek 2005)). Here, an adversary has a spam
message she would like to slip past a spam filter. She per-
forms an evasion attack (Biggio et al. 2013) by augment-
ing her original message so as to be classified as benign by
the already learned model. The attack motivation in our set-
ting is similar, where the past values are like Alice’s original
message, and she aims to alter them so as to change Bob’s
prediction about it (in our case, this prediction is a forecast
of the future rather than a binary label).

Using machine learning methods for time series forecast-
ing has also gained growing interest, as such methods of-
ten outperform traditional ARIMA models from the statis-
tics literature(Ahmed et al. 2010). See (Bontempi, Taieb, and
Le Borgne 2013) for further details and a review of machine
learning methods for forecasting.

Conclusions and Discussion

We have presented a general mathematical framework for
formulating an adversary’s data poisoning attack against a
fixed (presumably learned) linear autoregressive model. The
framework is general enough to accommodate various tar-
gets, costs, and constraints of the attacker. We have provided
several examples of real world settings for which the result-
ing optimization problem is convex and solvable. We then
explored the effectiveness of optimal attacks, as well as two
baselines, with empirical experiments on synthetic data as
well as real world data from US natural gas futures markets.
We examined Alice’s effectiveness as a function of her target
and constraints, as well as of Bob’s model.

From the empirical investigations, both baselines are con-
siderably outperformed by the optimal attack. We observed
that the attacks (as well as the random and greedy baselines)
have a long tail, but often are very effective. The relative
effectiveness of the Greedy and Random baselines vary by
model, but in general the Greedy baseline outperforms Ran-
dom, although Random will of course approach optimal as
the number of trials increases. As future work we plan to per-
form further empirical investigation to determine (i) what is
Alice’s effectiveness as a function of the order d of the model
and the forecast horizon h, (ii) how does Alice’s effective-
ness vary as a function of the type of constraint (e.g. per-step
vs total budget), and (iii) what aspects of Bob’s model effec-
tively hinder Alice’s abilities. A primary goal of this line of
research is to determine methods by which Bob can learn a
model which is both accurate and robust to attacks.

We have described several settings where Alice’s opti-
mal attack is phrased in a standard quadratic program. In
future work, we will explore other settings which still re-
sult in solvable systems. One example is when Alice has a
hard constraint on the squared 2-norm of her attack (|| · ||c =
|| · ||22). This yields a quadratically constrained quadratic pro-
gram (QCQP), and in interest of brevity we did not explore
this setting here.

Additional future work includes investigating a more lim-
ited attacker and more complicated forecaster. In some set-
tings, Alice must select her values “online”. That is, Alice
selects δi on day −i without knowing future values, and she
may not later change δi. We also seek to develop similar
methods of attack (and ultimately defense) against nonlin-
ear models, as well as direct and multiple-output forecasting
strategies.

Acknowledgments

This material is based upon work supported by the DHS
grant BAA 11-01 and AFRL grant FA8750- 12-2-0328. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and do not
necessarily reflect the views of the DHS or AFRL.

Support for this research was provided in part by NSF
grant IIS 0953219 and by the University of Wisconsin-
Madison Graduate School with funding from the Wisconsin
Alumni Research Foundation.



References
Ahmed, N. K.; Atiya, A. F.; Gayar, N. E.; and El-Shishiny,
H. 2010. An empirical comparison of machine learning
models for time series forecasting. Econometric Reviews
29(5-6):594–621.
Barreno, M.; Nelson, B.; Sears, R.; Joseph, A. D.; and Tygar,
J. D. 2006. Can machine learning be secure? In Proceedings
of the 2006 ACM Symposium on Information, computer and
communications security, 16–25. ACM.
Barreno, M.; Nelson, B.; Joseph, A. D.; and Tygar, J.
2010. The security of machine learning. Machine Learn-
ing 81(2):121–148.
Biggio, B., and Laskov, P. 2012. Poisoning attacks against
support vector machines. In In International Conference on
Machine Learning (ICML.

Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.;
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