S²: Efficient Graph Based Active Learning

Gautam Dasarathy

Machine Learning,
Carnegie Mellon University

gautamd@cs.cmu.edu
http://gautamdasarathy.com

joint work with

Rob Nowak ECE UW - Madison

Xiaojin (Jerry) Zhu Computer Sciences UW - Madison

G = ([n], E) is a known **undirected graph** on $[n] = \{1, 2, \dots, n\}$

G = ([n], E) is a known **undirected graph** on $[n] = \{1, 2, \dots, n\}$

 $f:[n] \rightarrow \{-1,+1\}$ is an **unknown labeling** function that we want to learn.

G = ([n], E) is a known **undirected graph** on $[n] = \{1, 2, \dots, n\}$

 $f:[n] \rightarrow \{-1,+1\}$ is an unknown labeling function that we want to learn.

Goal: Sequentially and actively select a subset $L \subset [n]$ to be labeled.

Predict $\{f(i): i \notin L\}$.

$$G = ([n], E)$$
 is a known **undirected graph** on $[n] = \{1, 2, \dots, n\}$

 $f:[n] \rightarrow \{-1,+1\}$ is an unknown labeling function that we want to learn.

Goal: Sequentially and actively select a subset $L \subset [n]$ to be labeled.

Predict $\{f(i): i \notin L\}$.

We are naturally interested in questions like:

- How to choose *L* (efficiently) ?
- How big does L have to be?
- How does the interaction between f and G affect these things?

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Randomly query

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Randomly query

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Randomly query

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Found oppositely labeled vertices

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

There are 2 shortest paths connecting oppositely labeled vertices.

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Pick the <u>shortest</u> shortest path and query at midpoint.

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Randomly query again till we find connected pairs of oppositely labeled vertices

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Randomly query again till we find connected pairs of oppositely labeled vertices

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Back to bisecting shortest shortest paths

- Randomly query vertices till you find a pair with opposite labels.
- Among all shortest paths connecting oppositely labeled vertices, pick the shortest one and query the vertex at its mid-point.
 - If you find a "cut" edge, remove it and proceed.
- If there are no more oppositely labeled vertices, go back to step 1 (random sampling).

Back to bisecting shortest shortest paths

S² thereby very efficiently finds the cut-edges

Visit the poster!

Please visit the poster to:

- Find out about our novel parametrization of the complexity of a binary function with respect to the graph.
 - Size of the cut set (boundary) $|\partial C|$
 - Class balancedness β
 - Cut set composed of m sets of cut edges such that each set is κ clustered.

arXiv: 1506.08760

Visit the poster!

Please visit the poster to:

- Find out about our novel parametrization of the complexity of a binary function with respect to the graph.
 - Size of the cut set (boundary) $|\partial C|$
 - Class balancedness β
 - Cut set composed of m sets of cut edges such that each set is κ clustered.
- Find out how to use this to understand the performance of S² theoretically.

Query complexity
$$\sim \frac{\log(1/\beta\epsilon)}{\log(1/(1-\beta))} + m\log n + |\partial C|\log \kappa$$

arXiv: 1506.08760

Visit the poster!

Please visit the poster to:

- Find out about our novel parametrization of the complexity of a binary function with respect to the graph.
 - Size of the cut set (boundary) $|\partial C|$
 - Class balancedness β
 - Cut set composed of m sets of cut edges such that each set is κ clustered.
- Find out how to use this to understand the performance of S² theoretically.

Query complexity
$$\sim \frac{\log(1/\beta\epsilon)}{\log(1/(1-\beta))} + m\log n + |\partial C|\log \kappa$$

- Learn how S² achieves near minimax optimal sample complexity for nonparametric active classification.
 - Consider the lattice graph and run S²
 - For a broad class of problems (Bayes decision boundary satisfies some regularity condition), sample complexity is

$$\mathcal{O}\left(\left(\frac{\log n}{n}\right)^{1/d-1}\right)$$

arXiv: 1506.08760