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             to be labeled.  
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We are naturally interested in questions like:  
• How to choose L (efficiently) ? 
• How big does L have to be ?  
• How does the interaction between f and G affect these 

things? 
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• Randomly query vertices till you find a pair 
with opposite labels.  

• Among all shortest paths connecting 
oppositely labeled vertices, pick the shortest 
one and query the vertex at its mid-point.  

• If you find a “cut” edge, remove it and 
proceed. 

• If there are no more oppositely labeled 
vertices, go back to step 1 (random 
sampling). 
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The S2 Algorithm

• Randomly query vertices till you find a pair 
with opposite labels.  

• Among all shortest paths connecting 
oppositely labeled vertices, pick the shortest 
one and query the vertex at its mid-point.  
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S2 thereby very efficiently finds the cut-edges



Visit the poster!
Please visit the poster to: 
• Find out about our novel parametrization of the 

complexity of a binary function with respect to the 
graph. 
• Size of the cut set (boundary)  
• Class balancedness  
• Cut set composed of      sets of cut edges such 

that each set is     clustered.  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graph. 
• Size of the cut set (boundary)  
• Class balancedness  
• Cut set composed of      sets of cut edges such 

that each set is     clustered.  

• Find out how to use this to understand the 
performance of S2 theoretically.  
 

• Learn how S2 achieves near minimax optimal 
sample complexity for nonparametric active 
classification. 
• Consider the lattice graph and run S2 

• For a broad class of problems (Bayes decision 
boundary satisfies some regularity condition), 
sample complexity is 
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