
S2: Efficient Graph Based Active Learning

Gautam Dasarathy
Machine Learning,

Carnegie Mellon University
gautamd@cs.cmu.edu

http://gautamdasarathy.com

Rob Nowak

joint work with

ECE
UW - Madison

Xiaojin (Jerry) Zhu
Computer Sciences

UW - Madison

The Problem

 is a known undirected graph on G = ([n], E)
[n] = {1, 2, . . . , n}

 is an unknown labeling
function that we want to learn.
f : [n] ! {�1,+1}

 is a known undirected graph on G = ([n], E)
[n] = {1, 2, . . . , n}

The Problem

 is an unknown labeling
function that we want to learn.
f : [n] ! {�1,+1}

 is a known undirected graph on G = ([n], E)
[n] = {1, 2, . . . , n}

The Problem

Goal: Sequentially and actively select a subset
 to be labeled.

Predict .

L ⇢ [n]

{f(i) : i /2 L}

 is an unknown labeling
function that we want to learn.
f : [n] ! {�1,+1}

 is a known undirected graph on G = ([n], E)
[n] = {1, 2, . . . , n}

The Problem

Goal: Sequentially and actively select a subset
 to be labeled.

Predict .

L ⇢ [n]

{f(i) : i /2 L}

We are naturally interested in questions like:
• How to choose L (efficiently) ?
• How big does L have to be ?
• How does the interaction between f and G affect these

things?

The S2 Algorithm

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Randomly query

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Randomly query

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Randomly query

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Found oppositely labeled
vertices

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

There are 2 shortest paths
connecting oppositely
labeled vertices.

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Pick the shortest shortest
path and query at midpoint.

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Continue this and remove
any cut edges found

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Continue this and remove
any cut edges found

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Continue this and remove
any cut edges found

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Continue this and remove
any cut edges found

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Randomly query again till
we find connected pairs of
oppositely labeled vertices

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

Randomly query again till
we find connected pairs of
oppositely labeled vertices

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

The S2 Algorithm

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling). Back to bisecting shortest

shortest paths

The S2 Algorithm

• Randomly query vertices till you find a pair
with opposite labels.  

• Among all shortest paths connecting
oppositely labeled vertices, pick the shortest
one and query the vertex at its mid-point.

• If you find a “cut” edge, remove it and
proceed. 

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling). Back to bisecting shortest

shortest paths

S2 thereby very efficiently finds the cut-edges

Visit the poster!
Please visit the poster to:
• Find out about our novel parametrization of the

complexity of a binary function with respect to the
graph.
• Size of the cut set (boundary)
• Class balancedness
• Cut set composed of sets of cut edges such

that each set is clustered.  

arXiv : 1506.08760

|@C|
�
m



Visit the poster!
Please visit the poster to:
• Find out about our novel parametrization of the

complexity of a binary function with respect to the
graph.
• Size of the cut set (boundary)
• Class balancedness
• Cut set composed of sets of cut edges such

that each set is clustered.  

• Find out how to use this to understand the
performance of S2 theoretically.  
 

arXiv : 1506.08760

|@C|
�
m



Query complexity ⇠ log(1/�✏)

log(1/(1� �))
+m log n+ |@C| log 

Visit the poster!
Please visit the poster to:
• Find out about our novel parametrization of the

complexity of a binary function with respect to the
graph.
• Size of the cut set (boundary)
• Class balancedness
• Cut set composed of sets of cut edges such

that each set is clustered.  

• Find out how to use this to understand the
performance of S2 theoretically.  
 

• Learn how S2 achieves near minimax optimal
sample complexity for nonparametric active
classification.
• Consider the lattice graph and run S2

• For a broad class of problems (Bayes decision
boundary satisfies some regularity condition),
sample complexity is

arXiv : 1506.08760

|@C|
�
m



Query complexity ⇠ log(1/�✏)

log(1/(1� �))
+m log n+ |@C| log 

O
 ✓

log n

n

◆1/d�1
!

