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Abstract

We study data-poisoning attacks using a machine teaching framework.
For a family of NP-hard attack problems we pose them as submodular
function maximization, thereby inheriting efficient greedy algorithms with
theoretical guarantees. We demonstrate some attacks with experiments.

1 Introduction

The security community has long recognized the threats of data-poisoning at-
tacks (a.k.a. causative attacks) on machine learning systems |1H6L(9}/10L/12}16],
where an attacker modifies the training data, so that the learning algorithm ar-
rives at a “wrong” model that is useful to the attacker. To quantify the capacity
and limits of such attacks, we need to know first how the attacker may modify
the training data to maximally manipulate the learned model while incurring
minimal effort. Recently, we proposed a unified attack framework [14}/15] to
compute the optimal data-poisoning attacks on machine learners. The frame-
work accommodates a wide range of attack effectiveness measures, attacker ef-
fort measures, and victim machine learning algorithms. It is based on machine
teaching [17], which creates an optimal training data to make the learner learn
the model in the teacher’s mind.

The solutions for optimal attacks can be difficult (e.g. NP-hard in Section
depending on the attack setting. Our contribution here is to pose a large family
of NP-hard attack problems into submodular function maximization, thereby
inheriting efficient greedy algorithms with theoretical guarantees. We show the
solution and its application with examples.



2 The Machine Teaching Framework Character-
izes Data-Poisoning Attacks

We first review the machine teaching framework. In general, let 6 denote the
model that the machine learning algorithm learns from training data D. For
example, if we denote the original training data Dy, then without attacks the
machine learner would have learned a model § D,- Note that, during an attack D
is not necessarily an #id sample drawn from some underlying p(z, y) distribution,
but this does not prevent the learner from applying the learning algorithm to
D and obtain some model éD.

The attacker has full knowledge of the learning algorithm. The attacker
carries out an attack by manipulating the training data from Dy to some set
D. For instance, in the context of classification the attacker may add a number
of foreign items (z’,y’) to Dy, remove some existing items (z;,y;) from Dy, or
change the value of z;’s and y;’s. In general, we use D to denote the (often
infinite) set of allowable training sets that the attacker can use.

The attacker wants to change the model that the learner learns. In “attrac-
tive attacks,” the attacker has a specific target model #* in mind. For example,
an attacker may want 05 ~ —0p, i for certain feature dimension k (e.g., whether
a vaccine was administrated or not) to make the k-th feature ostensibly having
the opposite correlation with the outcome variable, while keeping other dimen-
sions unchanged: 607 =~ 0p, ; for j # k. Hence the attacker may mislead a
domain expert who attempts to interpret the learned model. For such attrac-
tive attacks we may define an attack loss function loss(D) = ||p — 0*|| with an
appropriate norm. In “repulsive attacks,” the attacker does not want a specific
target model but simply wants 0p to be as far away from 0 D, as possible. This
can be captured by a different (non-convex) loss function loss(D) = —||0p—6p, ||
on parameter values, or by loss(D) = [ ]lf(w‘éD):f(w‘éDo)p(x)dx on future clas-

sification agreement, where f(z | 0) is the predicted label on test item x under
model 6, and p(z) is the marginal distribution of test items. In general, the defi-
nition of loss(D) is problem-specific and must be defined carefully by researchers
who study such attacks.

The attacker also wants to minimize the risk of being detected. More ma-
nipulation on the training data implies a higher risk of detection. The amount
of manipulation and the associated risk can be characterized by an attack ef-
fort function effort(D). For example, effort(D) = |DADy| the cardinality of
the symmetric difference to the original training set. Again, the definition of
effort(D) is problem-specific. We will see several examples in later sections.

In summary, the attacker would like to maximize its attack effect and mini-
mize effort while being constrained to search for an attacking training set within
D. We use the following optimization-based framework for optimal attacks on
machine learning:

min loss(D) + effort(D). (1)

Obviously, our framework needs to be instantiated for a specific learner (implicit



in Ap), attacking manipulations I, loss() and effort() functions. Not surpris-
ingly, the difficulty in solving (1)) depends critically on these attack settings. The
rest of the paper is devoted to one attack setting corresponding to certain NP-
hard combinatorial optimization problems. We will show how to convert the
optimization problem into submodular function maximization and hence
greedy algorithms with guarantee.

3 Submodular Attacks

We consider attack settings that result in a submodular function maximization
problem. Specifically, the minimization of loss() is equivalent to maximizing
some submodular function, while effort() contains a submodular cost function.
The main attraction of submodularity is efficient greedy procedures with theo-
retical guarantees.

First, we briefly review submodular function maximization [§]. Denote a
submodular function as f : 2V — R where V is a finite set. For every A, B C V

f(ANB) + f(AUB) < f(A) + f(B).

In addition, f is monotone if for every A C B C V, f(A) < f(B). Let ¢
be the cost associated with selecting the i-th element in V', and L the total
budget. Then the problem of submodular function maximization subject to
budget constraint is:

max f(S) s.t. Zci < L. (2)

SCV :
€S

This problem is in general NP-hard [7]. However, there exists efficient greedy
algorithms with (1 — ﬁ) approximation guarantee [11]: Let the greedy solution

be S CV, then f(S') > (1 — ﬁ) Maxg. s>, o e,<L f(S). The greedy algorithm

is as follows: we start with Sy = () and add the best element

argmax,cy, f{z}u Si;l) — f(Si—1) o)

to S;_1 in iteration 3.

The key, then, is to identify attack settings that can be formulated as sub-
modular functions. Below, we exhibit two such attack settings with distinct
attack manipulations.

3.1 Flipping-Label Attacks

Flipping-label attack is a family of attacks applicable to most binary classifi-
cation learners. The attack flips the label of selected training items, hence the
name. In standard binary classification, the original training data Dy contains
n feature x € X and label y € Y = {—1, 1} pairs, that is Dy = {(xo0s, Yoi) }11-



We focus on the case where the learned model is a discriminative function
hp, : X — R and sign(hp, () predicts the label of .

We consider attractive attacks where the attacker manipulates data into D
in order to guide the learned model hp to some target model h*. The attacker
can only “flip” some training labels. Therefore, the manipulated training data
D will be in the search space D = {{(z0;, v:)}"1|y: € V}. Further assume that
the i-th training item has a cost ¢; representing the effort the attacker must
take to flip the i-th label (or, alternatively, the risk of detection). We assume
the costs are additive, though it can be generalized to a submodular function,
too.

Given training data D, a large family of machine learning algorithms learn
by regularized risk minimization:

o = argminy e 3 6l M) + (1) @

where H is the hypothesis space considered by the learner, and () a regularizer.
o(y, h(z)) : ¥ x R = R is the surrogate loss. For example, in support vector
machines (SVM) it is the hinge loss ¢(y, h(z)) = max(0,1 — yh(z)); in logistic
regression (LR) it is the logistic loss ¢(y, h(z)) = log(1 4 exp(—yh(x))).

Accordingly, given the attack target h* an attacker may define the loss func-
tion as

loss(D Z &(yi, K (x0i)) (5)

where we ignored the regularizer since it is not a function of D. To build the
connection to submodular function minimization, we denote the set of flipped
items by S = {i | yi # yoi} C {1,2,...,n} and rewrite the loss as a function of
S:

loss(S) = Z[(Jﬁ(yi,h*(wm))—¢(in7h*(I0z’))]

€S
+ Z QS yOzy xOL ) (6)

The last term is a constant with respect to S and can be ignored. We define the
loss decrease [d(yoi, h*(x0;)) — d(—yoi, h*(x0;))] as the gain of flipping a label
(denoted as g;),

9 £ oyoi, K" (z0i)) — d(—yoi, h* (o)) (7)
We define the attack effort to be the (infinite) indicator function that the sum

of costs on flipped items cannot exceed the total budget L:

effort(S) = I(Z ¢; <L) (8)
i€s

IThis loss function does not guarantee that the victim learner will arrive at h*, but is
merely an encouragement toward h*.



Putting things together, the optimal attack problem for flipping-label attack
can be written equivalently as

mnggi s.t. Zci < L. (9)

i€S i€S

It is precisely the budgeted submodular maximization problem in . After
discarding the items with negative gain g; (these items can never be in the
optimal solution), the objective function is also monotone. In fact, it is the
Knapsack problem. By applying the results for submodular maximization, we
can solve @ with the greedy algorithm with approximation guarantee (1 —
ﬁ) |[11]. We point out that the flipping-label attack enjoys the greedy algorithm
and the guarantee even when the surrogate loss ¢() is not convex, thus the
flipping label attack can be inflicted on a large number of binary classifiers.

3.2 Pool-Based Adding-Data Attack on 1NN

We now present another attack setting where submodularity is useful. In a pool-
based adding-data attack, the learner is also a binary classification algorithm.
Unlike in flipping-label attacks, the attacker has a separate pool of candidate
attack items V- = {z1,..., zm} (e.g. a collection of pre-selected normal-looking
documents) in addition to the training data. In reality, the attacker may only
aim to increase either false positive or false negative. Therefore, without loss of
generality, all items in V' are assumed to be labeled as positive. The attacker
can choose a subset S C V, and make D = (5,1) |J Dy the manipulated training
set. Therefore, D consists of 2™ such augmented training data sets.

We demonstrate repulsive attacks here, where the attacker wants the model
trained with D to be maximally different from the model trained with Dy. We
assume that the attacker knows the marginal distribution p(z) from which future
test items will be drawn. This assumption can be easily replaced with a separate
validation set drawn from p(z), and the changes to the following algorithm is
straightforward. Let R(S) be the set of points labeled differently by hp(z) and

hop, (2):
R(S) = {xeX:hpyus(x)#hp,(x)}. (10)
Then the attacker may define the loss as
loss(S) =1—p(R(S))=1- / p(z)dz. (11)
TzER(S)

The attacker may use the same effort function as in flipping-label attack, namely
effort(S) = Z(>_ ¢i < L). The optimal attack problem can be equiva-
lently written an

max p(x)dx s.t. Z( ¢ <L).
ScvV /xGR(S’) zze;g '

z; €S



We now prove that when the learner is an 1-Nearest-Neighbor (1NN) classifier,
is a budget constrained maximum coverage problem and a special case
of budgeted submodular maximization [7]. To see this, let Dy and DF be
the subsets of Dy with negative and positive labels, respectively. Define the
distance between a point = and a set Z as d(x, Z) = min,cz ||z — z||. We show

that R(S) = U,,cs R({z})

R(S) = {z|d(z,S)<d(z,Dy) < d(z,Di)}
= {z| gleigd(% {z:}) <d(z,Dy) < d(z,Dg)}

{x | \/ (d(z,{z}) <d(z,Dy) < d(m,D{f))}

z; €S

U {& ld(e, {=:}) < d(z, Dy) < d(z, D)}

z;, €S

U Rz

z; €S

We formulate the objective in as a coverage function:

/ p(x)dx :/ p(z)dz. (12)
z€R(S) €U, es R({zi})

Therefore, the objective is the coverage of the set R(S) and is submodular and
monotone [7]. Following results in submodular maximization [11], the same
algorithm used in flipping-label attack can constructs the attack set S’ with a
1-— ﬁ guarantee.

4 Experiments

4.1 Flipping-Label Attacks

(Attack Setting) We use the Breast Cancer Wisconsin data set. E| It contains
699 data points. Each data point consists of 9 numeric features and a binary
label (benign vs. malignant).

We simulate two separate attacks, one on logistic regression (LR), the other
on support vector machine (SVM). We choose LR and SVM because their
learned weights Wp are often interpreted by domain experts for data explo-
ration and decision making, and hence an attack that changes the weights could
have adversarial consequences. For this particular data set, a positive weight
indicates a positive correlation between the feature and a benign outcome.

For the sake of demonstration, we arbitrarily selected the feature “Normal
Nucleoli” and assume that the attacker wants to changes its weight in the learned
model. The weight of this feature, denoted as wp, nn (obtained by LR or

%http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
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Figure 1: Flipping-label attack on logistic regression. (a) Objective value as
attack progresses; (b) Distance to attack target |wp vy — wiyy|; (¢) Flipping
of training points, +: original label yq; positive, o: original label yg; negative,
red: selected to flip label, black: not selected.

SVM, respectively), is originally positive. The attacker wants the target weight
on Normal Nucleoli to have the opposite sign: wyy = —Wp,,nvn, While the
weights on the other dimensions unchanged: wj = wp, ; for j # NN.

Since this is a proof-of-concept simulation, we generate a random cost for
flipping each item’s label. Specifically, the costs ¢; are sampled from a uniform
distribution on [1,10]. The total budget L in Eq @D is set generously at 700.

We are not aware of prior work on flipping-label attacks. As such, we only
compare our optimal attack framework (called submodular attack) against two
naive baselines. The first baseline random attack randomly selects training
items to flip the label subject to the budget constraint. The second baseline
randomPos attack differs from random attack in that it only selects positive-gain
items.

(Results) First, we show the objective value defined in Eq (9] of attacking
LR and SVM in Figures and[2(a)] The z-axis is the accumulative cost over
the items selected to flip labels as each algorithm progresses. Our submodular
attack increased the objective value rapidly. In contrast, random attack even
decreased the objective value, and randomPos attack increased it only slowly.
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Figure 2: Flipping-label attack on SVM

Therefore, submodular attack maximizes the objective much more effectively
than the two baselines.

We also show the distance between the learned model weight (over attacked
training data) and the target weight for the feature “Normal Nucleoli” |wp nn —
wiy| for LR and SVM in Figures and respectively. Submodular
attack decreased this distance much more rapidly than random and randomPos
attacks. For other weight dimensions, we report that the signs of all weights
remain the same and the change is not larger than 0.2. Therefore, submodular
attack successfully mislead the LR and SVM learners to the target model by
flipping the label of well-selected items.

We show the selection of flipping items in Figures and for attack-
ing LR and SVM, respectively. We draw each training item as a point with
coordinates (gain g;,cost ¢;). The gain was defined in Eq . Items originally
labeled as positive/negative are marked as crosses/circles. Selected items are
colored as red and the unselected items are colored as black. Submodular attack
effectively utilizes the budget to maximize the total gain.

4.2 Pool-Based Adding-Data Attack on 1NN

(Attack Setting) We demonstrate pool-based adding-data attack on 1NN us-
ing two data sets: MNIST handwritten digits and hotel review documents.



We use the MNIST dataﬁ which contains gray-scale images with handwritten
digits. We define a binary classification task on “1” (positive class) vs. “7”
(negative class). MNIST already contains a training vs. validation split. We use
the about 2000 validation points as our validation set. We further randomly split
out 25% of the about 11000 training points as our attack candidate pool. We
use Euclidean distance over gray-scale pixels for the distance between images.

We also use the HotelReview data set [13] which consists of hotel review
articles and an overall rating (an integer from 1 to 5) associated with each review.
The data set contains 5,000 reviews with 1,000 reviews for each rating. We
merged the 2,000 reviews with ratings 1 and 2 as negatively labeled documents,
and the 2,000 reviews with ratings 4 and 5 as positively labeled documents. The
1,000 reviews with rating 3 were discarded. We randomly sampled 25% of the
resulting data set as the attack candidate pool. We further randomly split the
remained documents as training data and validation data with a ratio of 7 : 3.
The distance between two documents x, 2’ is defined as 1 — cos(z, ).

For simplicity, we set the cost for selecting any item in the candidate attack
pool at a constant ¢; = 1. We choose the total budget at L = 40. Given the
constant cost, this budget means that we can at most choose 40 items from
the attack pool. We refer to our pool-based adding-data attack algorithm as
submodular attack again. For comparison, we implement two random baselines:
random attack randomly selects an item from the attack pool, and randomPos
attack randomly selects items which strictly decrease the loss (recall the loss
defined in Eq can be zero).

(Results on MNIST data) For the MNIST data set we show the loss (1)),
which the attacker attempts to minimize, in Figure Submodular attack
greatly misled the 1NN learner as the chosen attack items are added to the
training set. The 40 attack items represents less than 1% of the MNIST training
data. Submodular attack decreases the loss much more than the two baselines.

To shed light on the attack, we visualize the 40 selected attack items in
Figure [4 Recall that in this particular attack, the attacker always claims any
inserted items as in the positive class. Note that the selected attack items are
all in fact digits “7” (negative class). Therefore, the attacker’s strategy can be
understood as selecting representative “7” images in the candidate pool (which
contains a mixture of “1” and “7”), falsely claiming that these “7” images have
a positive label, and adding them to the training set. As a result, the 1NN
learner will be misled to incorrectly classify many neighbors of these “7” images
as class “1.”

To further visualize the attack, we run principal component analysis (PCA)
on the whole 1 vs. 7 data set (the training data, the validation data and the
attack candidate pool). We then project the data onto the first two principal
directions. Figure shows the attack candidate pool with their true labels.
The selected attack items are marked in red. There is an interesting tradeoff:
It is clear that the attacker should not select a “7” image in a low density
region to falsely call class 1, because it may not have many “7” neighbors to

Shttp://yann.lecun.com/exdb/mnist/
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Figure 3: Pool-Based Adding-Data Attack on 1NN with the MNIST data. (a)
Loss as the attack progresses; (b) PCA projection of the attack candidate pool;
(¢) PCA projection of the validation set.
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Figure 4: The 40 selected attack items in that order. All of them will be labeled
by the attacker as in class “1” and be added to the training set to attack 1NN.

mislead INN much. But the attacker should not select a “7” image in a very
high density region either, because the training set will likely already contain
many nearby 7’s with the correct label — again the “7” will not have a large
effect on misleading 1NN. As a result, the actually selected items in Figure
seem to form a loose cover of the 7’s. Figure shows the validation set with
their true labels. An “affected” point there is defined to be one who becomes
misclassified after the attack. The affected points are also evenly distributed in
the image space, which supports our analysis.

(Results on HotelReview data) The loss defined in Eq is shown
in Figure at the attack progresses. Similar to MNIST, submodular attack
greatly misled the 1NN learner with only small manipulations on the training
data (40 items are about 2% of the hotelreview training data) and decreased the
loss much more than the two baselines. We also visualize the documents. Unlike

10
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Figure 5: Pool-Based Adding-Data Attack on 1NN with the hotelreview data.
(a) Loss as the attack progresses; (b) Sentiment projection of the attack candi-
date pool; (c) Sentiment projection of the validation set.

in MNIST, PCA does not provide a clear picture here. Instead, our intuition is
that a review article’s positive and negative sentiment word counts can reflect
its opinion. We count both of them for each document. [1]
#positive words in document

We then define the positive word proportion of a document as Fiotal words in document
and negative word proportion similarly. We project each document as a point
to this 2D “sentiment space” with the proportions as coordinates in Figure
and Figure Similar to the MNIST data, the attacker selects the truly neg-
ative labeled items, pretends them as positive label data, and adds them into
the training data. The distribution of selection is also near evenly distributed.
We conclude that submodular attack effectively misleads the 1NN learner
with very small amount of manipulation.

5 Discussions

We showed several examples of submodular attacks. These attacks can be read-
ily generalized to other learners with a submodular objective. They can po-

4The positive and negative sentiment word lists are downloaded from fhttp://www.cs.uic.
edu/"1iub/FBS/opinion-lexicon-English.rar
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tentially be further generalized. For example, for attack settings that are not
submodular, one can sometimes relax the problem into a submodular maxi-
mization problem, then our submodular attack applies on the relaxation. These
extensions are left for future work.
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