
Debugging Machine Learning
Extended Abstract

Gabriel Cadamuroa

Microsoft Research
Redmond, WA 98052, USA
cadamuro.gabriel@gmail.com

Ran Gilad-Bachrach
Microsoft Research
Redmond, WA 98052, USA
rang@microsoft.com

Xiaojin Zhub

Microsoft Research
Redmond, WA 98052, USA
jerryzhu@cs.wisc.edu

aCurrent address: University of Washington, Seattle, WA, 98195, USA
bCurrent address: University of Wisconsin–Madison, WI, 53706, USA

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:

• ACM copyright: ACM holds the copyright on the work. This is the historical
approach.

• License: The author(s) retain copyright, but ACM receives an exclusive
publication license.

• Open Access: The author(s) wish to pay for the work to be open access. The
additional fee must be paid to ACM.

This text field is large enough to hold the appropriate release statement assuming it is
single spaced in a sans-serif 7 point font.
Every submission will be assigned their own unique DOI string to be included here.

Abstract
Creating a machine learning solution for a real world prob-
lem often requires multiple iterations of investigation and
improvement until it reaches satisfactory performance.
Even after deployment, it is common to discover limitations
of the model or changes in the target concept that neces-
sitate modifications to the training data and parameters.
However, as of today, there is no common wisdom about
what these iterations consist of, nor what debugging tools
are needed to aid the investigative process. In this work we
present a novel technique to help model developers find
the root causes of prediction error on test items (henceforth
‘bugs’) and so help the developer to fix them. Given an ob-
served bug our method aims to identify the training items
most responsible for biasing the model towards giving the
wrong prediction on the specific test item. This set of train-
ing items can aid in discovery of common errors like faulty
training labels or poor training data coverage. Our method
is applicable over many different learners, including deep
neural nets with large and complex model representations,
as well as many different data types.

Author Keywords
Machine Learning; Debugging



ACM Classification Keywords
I.5.1 [Computing Methodologies]: PATTERN RECOGNI-
TION—Models; D.2.5 [Software]: SOFTWARE ENGINEER-
ING—Testing and Debugging

Introduction
While the application of Machine Learning techniques in
industry during the age of Big Data has led to models of in-
credible accuracy and practical use, the resulting systems
have become correspondingly unwieldy and difficult to man-
age. As is the case in almost any engineering discipline,
the process of developing a machine learning model is an
iterative process such that in each iteration previous mod-
els are tested, problems are discovered, the root cause for
the problems are identified and an improved model is devel-
oped. Therefore, each iteration includes testing, debugging
and development. However, as of today, there are no com-
mon debugging tools for machine learning and very little
research have been conducted trying to come up with such
tools.

It is important to distinguish between debugging the learn-
ing algorithms and debugging the model [6]. In this work
we focus on the later. That is, we assume that the learning
algorithm is correct; however, the model that was gener-
ated makes wrong predictions. Therefore, imperfections
in the model could be a result of the information provided
in the training data – for example, mislabeled items and
missing features. The goal of this study is to suggest tech-
niques that allow the developer to identify the root cause
of incorrectly predicted test items and to help in proposing
remedies.

A case study: debugging a spell corrector
To motivate this work, we give a real life example that shows
the impact that developing machine learning debugging

Figure 1: Diagram representing a generic machine learning
debugging workflow on the outside (each square represents a
discrete process) and the data used by this workflow as circles in
the center. Prerequisite data for a process is shown by an
incoming arrow into a process while the output of a process is
linked by an outgoing arrow. The process are also identified by
icons showing whether they are performed entirely by algorithms
or with at least a degree of human intervention. For briefness,
process can be referenced by their verb: for example the "identify
root cause" process will be referred to as the identification
process. This study focuses on the "Propose cause" process that
provides a debug hint to the developer to help them find the root
cause of a bug.



tools can provide. This example came about while collab-
orating with a group of developers and data scientists who
were responsible for the spell correction component in the
Bing search engine. This component receives the query the
user sent together with a proposed correction and predicts
the quality of this correction. In other words, the speller
component is a classifier whose input is x =(query, cor-
rection) and whose output y is a quality label among “Per-
fect, . . ., Bad”. For example, for the input query-correction
pair (rnold schwarazenegger, arnold schwarzenegger) we
expect this component to predict y =Perfect since “arnold
schwarzenegger” is a good spell correction to the query
“rnold schwarazenegger”.

Having recently re-trained their spell correction model with
new sources of training data, the spell corrector team found
that while the new speller model had higher overall accu-
racy it also made some new embarrassing mistakes. One of
these new mistakes was that the speller gave a high score
to the test item (Portland or, Portland). That is, this model
suggested that the query “Portland or” should be converted
to the query “Portland”. Note, however, that there are sev-
eral cities in the US with the name “Portland” while “or” is
state code of Oregon and therefore, the intent of the user
was to query for the city of Portland in Oregon. However,
if the speller would have dropped the “or” from the query,
the search engine would return results on other cities, for
example Portland in the state of Maine.

The question though is, why did the model find that this
spell correction is good? are there similar problems that
were not identified? How can this bug be fixed? Given the
size of the model (hundreds or thousands of trees) and the
size of the training data (millions of items), manual inspec-
tion of either of them was not a feasible solution.

To help mitigate such problems, we proposed a technique

that scanned the entire training data and tried to identify
a small subset of the training data that had the largest in-
fluence on making the model return this anomalously high
score for the test item. The output of our technique on the
test item (Portland or, Portland) is illustrated in Table 1. In
this case the technique returned a subset of the training
data that was helpful to identify the root cause of the bug.
Specifically, the training items (Dayton-TN, Dayton), (Cas-
cadia,OR, cascadia), (F-statistics, statistics) all have train-
ing label “Perfect”. This is wrong because the corrections
are in fact undesirable from a spell checking perspective.
Our selected subset of training items thus enabled the de-
velopers to identify the root cause: it turns out there was an
error in how labels were applied to a specific training file.
Upon fixing it and re-running the training process, the de-
velopers corrected this test error and improved the overall
performance of the spell checking model.

training x =(query, correction) label y influence
(Dayton-TN, Dayton) Perfect 0.958
(waterloo wi, waterloo) Bad 0.957
(humor.on, humor) Bad 0.940
(Cascadia,OR, cascadia) Perfect 0.931
(F-statistics, statistics) Perfect 0.928

Table 1: A snapshot showing the output of our debugging tool for
the bug on test item x =(Portland or, Portland). The “influence”
column is the score produced by our technique to indicate how
important this training data item was to the bug in question (with 1
being the highest score). Those highlighted in red indicate training
labels later deemed incorrect by developers.

The bigger picture
As discussed earlier, developing and maintaining a machine
learning solution is a process in which the developer tries
to improve the solution. A schematic view of this process



is presented in Figure 1. The focus of this work is in assist-
ing the developer who identified a bug (or a set of bugs) in
finding the root cause. In order to provide a generic solu-
tion that works for different data types and learning algo-
rithms, we propose the following approach. Given the bug,
our technique scans the training data and finds a (small) set
of training items such that if the labels of these items are
modified, a model trained on the modified data would not
have the bug. This small set of training items and their origi-
nal labels, which we call the “debug hint”, can be presented
to the developer to help finding the root cause of the bug.

Figure 2: A demonstration of our
technique on a bug in a
deep–neural–network trained for
image classification (CIFAR). If the
top test image was misclassified,
the bottom four training images are
a possible debug hint in the sense
that changing their training labels is
likely to change the prediction on
the top image. Note that the
images are not pixel-wise similar.

The information presented in the debug hint is a subset of
the training data. Therefore, it has the same type as the
data the developer is using and thus can comprehend.
Our main technical contribution is to formulate the prob-
lem of finding a good debug hint as an optimization prob-
lem. Although this optimization problem is model dependent
(neural-networks, trees, Gaussian-processes,...), the de-
veloper does not have to understand the internals of the
algorithm being used. In our spell checker case study we
demonstrated how the debug hint has been used to find a
data source containing wrong labels. As another example,
Figure 2 demonstrate an image classification task that was
trained with deep-neural-networks. A developer does not
have to understand the way neural-networks work in order
to use the debug hint.

Previous work
There has been some prior work on debugging machine
learning models within which we wish to frame our work.
We do so by considering them in the context of Figure 1 to
give us a consistent taxonomy in which to consider where
these projects focused their attention and where their achieve-
ments lie.

The closest work to the one presented here is the work of

Kulesza et al. [6] which discusses explicitly the problem of
debugging machine learning models which they refer to as
machine learning programs. They introduced the idea of
providing explanations that the developer can use to debug:
thus considering different version of the proposal process
while empirically evaluating performance by the result of
the fixing process. In contrast to our work, they focus on
specific type of data (natural language) and assume that
the model that was learn can be expressed as rules that are
human intelligible.

Brooks et al. [3] presented a tool to assist developers in the
ideation process of new features in the context of text base
models. They proposed a visualization tool that highlights
mislabeled examples to allow the user to think about new
features. Again, this system is limited to specific type of
problems (NLP).

Following Fails and Olsen Jr [4] there have been studies
on interactive machine learning (see, for example, [2, 1]).
These studies look at interfaces between humans and ma-
chines that allow for very rapid development iterations such
as in recommender systems in which every piece of infor-
mation provided by the user has an immediate effect on
the model. They argue that this interaction should allow the
user to gain insight about the underlying logic of the model
to allow the user to provide the right feedback to steer it
in the right direction [1]. The main focus of this line of re-
search is on the interface design while our focus is on algo-
rithms that find good ’hints’.

Kulesza et al. [5] showed that when users have a better
understanding of the model, they provide better feedback
to improve the model. The users in this study were not
machine learning developers but users of a music rec-
ommendation system. Nevertheless, they managed to
achieve their goals better and correct the system when it



was making mistakes, showing that when the identification
process is well designed (for example, when identifying the
root cause of why a music recommender presented a poor
song choice, users have options like "song is too slow")
useful debugging is not restricted to engineers and experts.
Rosenthal and Dey [7] studied ways to interact with user to
solicit correct labels and thus prevent bugs. However, they
do not discuss how to handle bugs (the fixing process) or
how to discover which unimplemented features should be
added next.

Our contribution
The main contribution of this work is a method that allows
debugging machine learning solution which is not restricted
to specific type of data or specific algorithms. We propose a
debugger that presents a subset of the training data as the
debug hint. This explanatory subset of training data should
be the data most responsible for creating the bug during
training time: namely if it was removed or altered the bug
would be less likely to exist or less severe; we also want the
debug hint to be reasonably small so as to be comprehen-
sible to a human developer. These two competing criteria
thus define a notion of optimality for the debug hint set: the
optimal debug hint should be both highly responsible and
small in size at the same time.

We imagine several ways in which common root causes
could be detected via such debug hint. Mislabeled train-
ing data can be identified by consistently showing up in
these subsets as we saw in our case study. Low coverage
for specific data items might be identified by bugs which
return very small explanatory subsets while feature blind-
ness (when a critical feature for this learning task has not
yet been implemented) might be identified by finding that
the explanatory subset that is proposed contains examples
that are not expected to be similar.

Our work provides a formulation of the machine debugging
flow and its main processes. The core of our formulation is
a “debug hint optimization” problem to identify the optimal
debug hint. This optimization problem is in general a multi-
objective optimization problem. For certain learners, such
as ordinary least squares and Gaussian process regres-
sion, we exhibit closed-form solution for finding the Pareto
optimal solutions. For other learners such as ensembles
of trees and neural networks, we propose an approxima-
tion technique to the optimal debug hint set and then test its
performance empirically.

We hope that this work will encourage other researchers
to make further contributions to the study of the entire life
cycle of machine learning based engineering.

References
[1] Saleema Amershi, Maya Cakmak, W Bradley Knox,

and Todd Kulesza. 2014. Power to the people: The
role of humans in interactive machine learning. AI
Magazine 35, 4 (2014), 105–120.

[2] Saleema Amershi, James Fogarty, Ashish Kapoor, and
Desney S Tan. 2011. Effective End-User Interaction
with Machine Learning.. In AAAI.

[3] Michael Brooks, Saleema Amershi, Bongshin Lee,
Steven M Drucker, Ashish Kapoor, and Patrice Simard.
2015. FeatureInsight: Visual Support for Error-Driven
Feature Ideation in Text Classification. In IEEE Sym-
posium on Visual Analytics Science and Technology
(VAST).

[4] Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive
machine learning. In Proceedings of the 8th interna-
tional conference on Intelligent user interfaces. ACM,
39–45.

[5] Todd Kulesza, Simone Stumpf, Margaret Burnett, and
Irwin Kwan. 2012. Tell me more?: the effects of men-



tal model soundness on personalizing an intelligent
agent. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 1–10.

[6] Todd Kulesza, Simone Stumpf, Margaret Burnett,
Weng-Keen Wong, Yann Riche, Travis Moore, Ian
Oberst, Amber Shinsel, and Kevin McIntosh. 2010. Ex-
planatory debugging: Supporting end-user debugging
of machine-learned programs. In Visual Languages
and Human-Centric Computing (VL/HCC), 2010 IEEE
Symposium on. IEEE, 41–48.

[7] Stephanie L Rosenthal and Anind K Dey. 2010. To-
wards maximizing the accuracy of human-labeled sen-
sor data. In Proceedings of the 15th international con-
ference on Intelligent user interfaces. ACM, 259–268.


	Introduction
	A case study: debugging a spell corrector
	The bigger picture
	Previous work
	Our contribution

	References

