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Abstract
Creating a machine learning solution for a real
world problem often becomes an iterative pro-
cess of training, evaluation and improvement
where the best practices and generic solutions
are few and far between. Our work presents a
novel solution for an essential step of this cycle:
the process of understanding the root causes of
’bugs’ (particularly consequential or confusing
test errors) discovered during evaluation. Given
an observed bug, our method aims to identify the
training items most responsible for biasing the
model towards creating this error. We develop
a optimization based framework for generating
this information which leads to our method not
only having simple analytic solutions for certain
learners but to it also being applicable to any su-
pervised learner or data type.

1. Introduction
While the application of Machine Learning techniques in
industry during the age of Big Data has led to models
of incredible accuracy and practicality, the resulting sys-
tems have become correspondingly unwieldy and difficult
to manage. As is the case in almost any engineering disci-
pline, the process of developing a machine learning model
is an iterative process where in each iteration previous
models are tested, problems are discovered, root causes
identified and an improved model is developed. There-
fore, each iteration includes testing, debugging and devel-
opment. However, as of today, there are few debugging
tools for machine learning.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

In this work we focus on one step of this iterative cycle, as-
sisting the developer who identified a bug (where a bug is
a particularly damaging or inexplicable test error) in find-
ing the root cause. In order to provide a generic solution
that works for different data types and learning algorithms,
we focus on suspected root cause in the training data itself.
Given the bug, our technique scans the training data and
finds a small set of training items such that if these items
were altered the bug would be either solved or at least mit-
igated. We call this set of data the fix and in addition to
helping fix the selected test errors it should also be small
enough to be interpretable. These two criteria thus define a
notion of optimality for the fix.

There has been some prior work in the general area of
simplifying the iterative model building cycle. The work
by Kulesza et al. (2010) provided explanations for certain
types of errors, and several works have visually represented
different model errors as in Brooks et al. (2015). Systems
such as Amershi et al. (2014) and Kulesza et al. (2012) are
designed to bridge the gap between detecting errors and
making improvements . Many of these works achieved im-
pressive results but were specifically tailored towards a spe-
cific type of human comprehensible data sets (music, nat-
ural language documents) or models that are sufficiently
simple to be understood by a user. Our work build on these
by creating a generic, principled framework.

2. Definitions
Let MD be a model trained on the training data D =
(X,Y ). The modelMD is said to have a bug if it makes
wrong prediction on some test examples. We denote a sub-
set of test examples that are bugs asD∗ = (X∗, Y ∗), where
Y ∗ are the correct labels. We assume that the cause of the
bug lies in the training data itself, not in e.g. the choice of
machine learning model. A fix to a bug set D∗ is a change
to the training data D such that if the model is trained on
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the modified dataset, it will be more accurate when applied
to D∗. For simplicity, we restrict the changes to just op-
erating on the labels of training examples. As such, a fix
is defined by the change vector ∆ on training labels. We
denote by D ⊕ ∆ the modified dataset obtained by apply-
ing the fix ∆ to the dataset D; the operator ⊕ can be e.g.
addition for regression and XOR for binary classification.

A fix ∆ should satisfy two conditions: (i) it should fix the
problem, that is, MD⊕∆ should perform better on the set
D∗ compared to the original modelMD; (ii) the fix should
be small in the sense that ∆ is sparse. This has two reasons:
First, as a debugging aid, it should provide a concise rep-
resentation that will aid developers in the debugging pro-
cess. Moreover, assuming the learning algorithm is sta-
ble (Bousquet & Elisseeff, 2002), a “small” fix will ensure
thatMD⊕∆ will maintain the accuracy ofMD while cor-
recting the predictions on D∗.

Therefore, we introduce two functions. Complexity (∆)
measures the complexity or the size of the fix. For example,
in binary classification ∆ indicates which labels should be
flipped so the complexity can be the number of non-zero
elements; in regression it can be the norm of the change
vector. Fixloss (D,D∗,∆) measures the loss of the model
MD⊕∆ on D∗. A better training set D ⊕ ∆ will incur
lower Fixloss. We will often shorthand the function as
Fixloss (∆) in the interest of clarity. Both functions are
problem dependent.

Our main optimization problem to find the optimal fix is:

arg min
∆∈∆

[Fixloss (∆) + λ · Complexity (∆)] (1)

This formulation is completely general and applicable to
any supervised learners, but is usually a combinatorial op-
timization problem. We note its similarity to the machine
teaching problem (Zhu, 2015).

3. Analytical Solutions for Certain Learners
In this section we show an efficient way to find the optimal
fix ∆ for both Ordinary Least Square (OLS) regression and
Gaussian Processes (GP) regression.

3.1. OLS Regression

In the case of OLS, the instances are vectors in Rd and the
labels are scalars in R. Therefore, the training set D can be
thought of as a matrix X of size n × d of the instances
and a label vector Y of length n. Denoting by βD the
weight vector of the regression model trained on D, we re-
call that (Duda et al., 2012) βD = (XTX)−1XTY . Now,
let us consider the result we would get if we retrained with
a fix. Consider a fix ∆ and corresponding altered data set
D ⊕ ∆, then training a model using D ⊕ ∆ instead of D

we get

βD⊕∆ = (XTX)−1XT (Y + ∆) = βD +A∆, (2)

where A = (XTX)−1XT .

The natural formulation of fixloss for this situation should
be the loss function used by the underlying OLS (sum of
squares): hence we use the squared L2 norm on the test set
error.

Fixloss (D,D∗,∆) =
∥∥∥Y ∗ −X∗TβD⊕∆

∥∥∥2

2

=
∥∥∥Y ∗ − (X∗TβD +X∗TA∆

)∥∥∥2

2

We let the complexity function be the p-norm of ∆, usually
p = 1 or 2: Complexity (∆) = ‖∆‖p. Substituting these
back into (1) we find the optimal fix by

arg min
∆∈∆

∥∥∥Y ∗ − (X∗TβD +X∗TA∆
)∥∥∥2

2
+ λ ‖∆‖p .

This can be further simplified by defining Ŷ = Y ∗ −
X∗TβD and Â = X∗TA to obtain

arg min
∆∈∆

∥∥∥Ŷ − Â∆
∥∥∥2

2
+ λ ‖∆‖p . (3)

Therefore, finding the optimal ∆ reduces to solving a reg-
ularized linear regression problem. This is a convex opti-
mization problem for p ≥ 1.

The case of p = 1 is of special interest since it pro-
motes sparse fixes. If D∗ contains a single bug then Ŷ
is a scalar and Â is a n-dimensional vector where n is
the number of training items. In this case, (3) boils down

to arg min
∆

∥∥∥ŷ − Â∆
∥∥∥2

2
+ λ ‖∆‖1 and it is easy to verify

that a fix ∆ is optimal iff ∆i = 0 for every i such that∣∣∣Âi

∣∣∣ < maxj

∣∣∣Âj

∣∣∣. Assuming that all the values of
∣∣∣Âj

∣∣∣
are unique, we get a natural ranking of proposed fixes by
the order of the value of

∣∣∣Âj

∣∣∣. Recalling that

Â = X∗A = X∗(XTX)−1XT

we note that Â is the Mahalanobis inner product (Kung,
2014) between the test data and training data. Hence we
note the interesting relation that the closer some training
point Z is to X∗ under the similarity metric induced by this
Mahalanobis inner product, the more favorable it is to fix
the label of Z in order to fix the prediction of X∗. We re-
turn to the concept of a similarity metric in Section 4, in
which we extend the discussion to more complicated learn-
ing techniques such as neural nets and ensembles of trees.
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3.2. Gaussian Processes

In this section we show that the techniques presented in
Section 3.1 can be extended to the setting of Gaussian Pro-
cesses (Rasmussen & Williams, 2006). Namely, given a
training set D and a set of bugs D∗, a kernel function K
and an assumed Gaussian noise on the training labels with
variance σ2 we once more ask to optimize (1) .

Letting Ŷ be the MAP predictor for the Gaussian Process
on the test points, its formulation as given by equation 2.23
in (Rasmussen & Williams, 2006) is below:

Ŷ = K(X∗, X)(K(X,X) + σI)−1Y (4)

Therefore, denoting Â = K(X∗, X)(K(X,X) + σI)−1

we obtain that Ŷ = ÂY . Now we want to add the label
delta ∆ to Y to minimize the evaluation equation. Note
that Â does not depend on the value of Y and so remains
unchanged. Hence, the fixloss function is Fixloss (∆) =∥∥∥Y ∗ − Ŷ ∥∥∥ =

∥∥∥(Y ∗ − ÂY )− Â∆
∥∥∥ which when substi-

tuted into (1) gives the optimization problem

min
∆∈∆

∥∥∥(Y ∗ − ÂY )− Â∆
∥∥∥+ λ ‖∆‖

Once more minimizing the evaluation function has reduced
to a linear regression problem. Considering Â as a training
set,

(
Y ∗ − ÂY

)
as the target labels and ∆ as the vector

representation of the linear regressor shows us this equiv-
alence. Hence, obtaining the optimal fix for a Gaussian
Process model is very similar to the case for OLS.

4. Empirical results on advanced learners
In the previous section we were able to present optimal
fixes for some learning algorithms since they provided a
closed form solution for computing the model. However
many commonly used algorithms, such as back propaga-
tion for learning neural networks, boosting and random
forests do not share this property. In the absence of any
other options this would imply that proper optimization of
the fixloss function of any fix would have to be achieved
by naively applying the delta to the training set, retraining,
evaluating the fixloss it produced and doing this over the
entire space of permissible values of ∆. Even if there is a
way to limit the search space for ∆, evaluating its fixloss
for a learning algorithm like a deep neural net would be
prohibitively expensive since it would require a total re-
training of the model. In this section we provide a frame-
work for working around this problem and provide empir-
ical results for an example scenario where the learner is a
regression tree ensemble.

In these situations one solution is to simplify by intro-
ducing the idea of a heuristic model similarity (HMS). A

heuristic model similarity is defined for a specific learning
algorithm A and evaluates the similarity between a train-
ing point x and test point x∗, drawn from train and test sets
X and X∗ respectively, from the perspective of a model
M. We will denote the similarity between xi and x∗j as
sij , where sij is defined as (assuming that the algorithm and
model are clear from context):

sij = HMSA
(
M, xi, x

∗
j

)
si =

∑
j

HMSA
(
M, xi, x

∗
j

)
This choice was motivated by the discussion at the end of
section 3.1 where ordering the training points by a Maha-
lanobis inner product with respect to a test point produced
a ranked list of training data points with the largest fixloss
improvement if their corresponding label was changed. If
we assume that the heuristic similarity value si for a train-
ing data point xi does approximately correspond to how
much it will improve fixloss (as detailed below):

Fixloss (∆) ≈ loss(MD, D
∗)−

∑
i

si∆i (5)

Then our optimization can be restated as

min
∆∈∆

−(
∑

i si∆i) + λ(Complexity (∆)) (6)

This considerably simplifies finding ∆ since we can evalu-
ate each data point individually instead of potentially hav-
ing to evaluate every possible subset of training points at
the cost of obtaining only approximately optimal results.

Given the lack of an analytical solution, understanding
which heuristic is appropriate for a given learner becomes
an important consideration. We design an experimen-
tal methodology for this called the ease of change anal-
ysis. Given an initial training set D on which we train
MD, define D∗ as the set of test points on which MD

returns the wrong prediction. We can now compare a
set of heuristics {HMSi} by performing a set of trials in
which we randomly select d∗ ∈ D∗, compute the opti-
mal ∆i for each heuristic on this point with the constraint
Complexity (∆i) < cj for some complexity budget cj and
inspect the average Fixloss (∆i) over these trials. This
simulates the process of understanding a bug, with heuris-
tics returning higher fixloss scores providing a set of train-
ing points that better explain the error. A superior HMS
should obtain superior fixloss scores on a wide range of
complexity budgets cj . We illustrate this in an empirical
example using a regression tree ensemble.

4.1. Evaluating heuristics on a regression tree ensemble

In this experiment we demonstrate the suitability of three
different heuristic model similarities for debugging the re-
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gression tree ensemble learner. The first HMS was sim-
ply the Euclidean metric on the feature representation of
two points. The second HMS (Jaccard) assigned scores
based on how similar a path two data points traverse from
the root of a tree to a leaf. The third HMS (Weighted-
Jaccard) builds on the Jaccard method by including infor-
mation about the internal nodes of each regression tree. In
order to evaluate these three HMSs we use a publicly avail-
able flight delay dataset.1. This dataset contains informa-
tion about flights such as their time, date, destination air-
port, carrier as the features and a boolean label indicating
whether the flight experienced over 15 minutes of delay.

The dataset is unbalanced with around 20% being positive.
We selected a training set consisting of 500,000 examples
and a test set of 100,000 examples. We then trained two
initial tree ensembles (one with 20 trees and one with 100
trees) on this set and obtained an initialD∗ set for both. We
use gradient boosting (MART) as the learning algorithm.
The complexity budget (defined as the cardinality of ∆ to
encourage sparsity and interpretability) constraints were set
as 10, 25 ,50, 75 and 100: we determined any larger set
would be hard for a user to inspect. Finally we took sev-
eral hundred random trials for each complexity budget and
compared the fixloss of the different ∆i vectors. Given the
unbalanced nature of the dataset we aggregated results for
false negative d∗ separately from false positives.

Figure 1 shows that for both the false negative bugs and
false positive bugs that the two HMS implementations that
account for model structure unsurprisingly beat the model
agnostic Euclidean implementation. For a given budget of
Complexity (∆) we see that the average fixloss achieved
on the y-axis by the two Jaccard metrics is often several
times higher. Moreover, we also noted that retraining on a
given ∆ has no significant effect on the model’s aggregate
performance on the rest of the test set. This methodology
shows how different HMS implementations can be tested
on different dataset for a given learning algorithm to ensure
that the returned ∆ vectors are a useful tool for debugging
this family of models.

5. Discussion
In this work we suggested a framework for helping ma-
chine learning developers understand “bugs” in a learned
model by returning pertinent training items. This frame-
work has closed-form solutions for certain learners and for
more complex learning algorithms we presented a heuris-
tic solution. The framework can be applied to any type of
supervised learner and is designed to scale gracefully with
respect to the size of both model and data. We hope that

1http://datamarket.azure.com/dataset/
oakleaf/us_air_carrier_flight_delays_incr

Figure 1. Ease of loss analysis for different test conditions, where
a higher value for any given x-value indicating greater fixloss
performance. Both Jaccard HMS variants comprehensively out-
perform a model agnostic version at lower complexity budgets
and reach at least parity at higher budgets.

this will make it a useful framework in practical industrial
situations.

There are many interesting avenues to continue exploring.
For example, it is sometimes useful to be able to provide
an explanation to the prediction a model makes. We could
imagine this in the case of doctor disagreeing with a di-
agnostic model and wanting to understand what prompted
this diagnosis before making a final decision. Our method-
ology supports providing such explanations as a set of sim-
ilar examples from the training data. Another investigation
might focus on performing a human study to quantify the
relationship between the quality of fix data and its impact
on human debugging performance. Many other debugging
methods are possible and it is our hope that this study will
encourage others to further explore tools to assist the ma-
chine learning model development cycle.

http://datamarket.azure.com/dataset/oakleaf/us_air_carrier_flight_delays_incr
http://datamarket.azure.com/dataset/oakleaf/us_air_carrier_flight_delays_incr
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