Machine Teaching for Bayesian Learners in the Exponential Family

Xiaojin Zhu

Department of Computer Sciences, University of Wisconsin-Madison (jerryzhu@cs.wisc.edu)

Machine Teaching

Machine teaching: finding the best training set.

- World: test items $x \stackrel{iid}{\sim} p(x \mid \theta^*)$.
- Learner: hypothesis space Θ
- Teacher: knows θ^* , Θ , learning algorithm, teaches by creating a training set \mathcal{D} .

Optimal Teaching Key Idea

$$\min_{\mathcal{D}} \ \operatorname{loss}(\widehat{f_{\mathcal{D}}}, \theta^*) + \operatorname{effort}(\mathcal{D})$$

- effort() of the teacher/learner to work with \mathcal{D} .
- Not regularized estimation: θ^* given.
- Hard combinatorial optimization
- Objective called Teaching Impedance $TI(\mathcal{D})$

Teaching Bayesian Learners

- Teacher knows learner prior $p_0(\theta)$ and likelihood $p(\mathcal{D} \mid \theta)$, can design non-iid \mathcal{D}
- $\bullet \operatorname{loss}(\widehat{f_{\mathcal{D}}}, \theta^*) = KL\left(\delta_{\theta^*} \| p(\theta \mid \mathcal{D})\right)$
- Teaching is to

$$\min_{\mathcal{D}} - \log p(\theta^* \mid \mathcal{D}) + \text{effort}(\mathcal{D}).$$

Not MAP estimate! Still hard.

Teaching Bayesian Learners in the Exponential Family

- Exponential family
- $p(x \mid \theta) = h(x) \exp\left(\theta^{\top} T(x) A(\theta)\right)$
- For $\mathcal{D} = \{x_1, \dots, x_n\}$ the likelihood is

$$p(\mathcal{D} \mid \theta) = \prod_{i=1}^{n} h(x_i) \exp(\theta^{\mathsf{T}} \mathbf{s} - A(\theta))$$

with aggregate sufficient statistics

$$\mathbf{s} \equiv \sum_{i=1}^{n} T(x_i)$$

- Two-step algorithm:
- 1 finding aggregate sufficient statistics
- 2 unpacking

Step 1: Sufficient Statistics

• Conjugate prior $p(\theta \mid \lambda_1, \lambda_2) =$

$$h_0(\theta) \exp\left(\lambda_1^{\mathsf{T}} \theta - \lambda_2 A(\theta) - A_0(\lambda_1, \lambda_2)\right)$$

• \mathcal{D} enters the posterior only via \mathbf{s} and n:

$$\exp\left((\lambda_1 + \mathbf{s})^{\top} \theta - (\lambda_2 + n) A(\theta) - A_0(\lambda_1 + \mathbf{s}, \lambda_2 + n)\right)$$

Optimal teaching problem

$$\min_{n,\mathbf{s}} -\theta^{*^{\top}} (\lambda_1 + \mathbf{s}) + A(\theta^*)(\lambda_2 + n) + A_0(\lambda_1 + \mathbf{s}, \lambda_2 + n) + \text{effort}(n, \mathbf{s})$$

• Convex relaxation: $n \in \mathbb{R}$ and $\mathbf{s} \in \mathbb{R}^D$

Step 2: Unpacking

- $\mathbf{n} \text{Round } n \leftarrow \max(0, [n])$
- Find *n* teaching examples whose aggregate sufficient statistics is approximately **s**:
- initialize $x_i \stackrel{iid}{\sim} p(x \mid \theta^*), i = 1 \dots n.$
- solve $\min_{x_1,\dots,x_n} \|\mathbf{s} \sum_{i=1}^n T(x_i)\|^2$ (nonconvex)

Some unpacking examples:

- Exponential dist T(x) = x: $x_i = \frac{s}{n}$
- Poisson dist T(x) = x (integers): rounding
- Gaussian dist $T(x) = (x, x^2), n = 3, \mathbf{s} = (3, 5)$: $\{x_1 = 0, x_2 = 1, x_3 = 2\}$ or $\{x_1 = \frac{1}{2}, x_2 = \frac{5 + \sqrt{13}}{4}, x_3 = \frac{5 - \sqrt{13}}{4}\}$

Example 1

Teaching a 1D threshold classifier.

- Learner $p_0(\theta) = 1$, $p(y = 1 \mid x, \theta) = 1_{x > \theta}$
- $p(\theta \mid \mathcal{D})$ uniform in $[\max_{i:y_i=-1}(x_i), \min_{i:y_i=1}(x_i)]$
- effort $(\mathcal{D}) = c|\mathcal{D}|$
- The optimal teaching problem becomes

$$\min_{n,(x_i,y_i)_{1:n}} -\log\left(\frac{1}{\min_{i:y_i=1}(x_i) - \max_{i:y_i=-1}(x_i)}\right) + cn.$$

• One solution: $\mathcal{D} = \{(\theta^* - \epsilon/2, -1), (\theta^* + \epsilon/2, 1)\}$ as $\epsilon \to 0$ with $TI = \log(\epsilon) + 2c \to -\infty$

Example 2

Learner can't tell similar items

effort(
$$\mathcal{D}$$
) = $\frac{c}{\min_{x_i, x_j \in \mathcal{D}} |x_i - x_j|}$

With D = {(θ* - ε/2, -1), (θ* + ε/2, 1)},
TI = log(ε) + c/ε with minimum at ε = c.
D = {(θ* - c/2, -1), (θ* + c/2, 1)}.

Example 3

Teaching to pick a Gaussian out of two

- $\Theta = \{\theta_A = N(-\frac{1}{4}, \frac{1}{2}), \theta_B = N(\frac{1}{4}, \frac{1}{2})\}, \theta^* = \theta_A,$ $p_0(\theta_A) = p_0(\theta_B) = \frac{1}{2}$
- $loss(\mathcal{D}) = log (1 + \prod_{i=1}^{n} exp(x_i))$ minimized by $x_i \to -\infty$, weird items.
- Box constraints $x_i \in [-d, d]$:

$$\min_{n,x_{1:n}} \log \left(1 + \prod_{i=1}^{n} \exp(x_i) \right) + cn + \sum_{i=1}^{n} \mathbb{I}(|x_i| \le d)$$

- Solution: $n = \max\left(0, \left[\frac{1}{d}\log\left(\frac{d}{c} 1\right)\right]\right), x_{1:n} = -d$
- Note n = 0 when $c \ge \frac{d}{2}$: the effort of teaching outweighs the benefit. The teacher will choose not to teach, leaving learner with its prior p_0 !

Example 4

Teaching the mean of a univariate Gaussian.

- The world is $N(x; \mu^*, \sigma^2)$
- Learner's prior $p_0(\mu) = N(\mu \mid \mu_0, \sigma_0^2)$, knows σ^2
- T(x) = x
- Aggregate sufficient statistics solution

$$s = \frac{\sigma^2}{\sigma_0^2} (\mu^* - \mu_0) + \mu^* n$$

Note $\frac{s}{n} \neq \mu^*$: compensating for the learner's (wrong) prior belief μ_0 .

• n is the solution to

$$n - \frac{1}{2\operatorname{effort}'(n)} + \frac{\sigma^2}{\sigma_0^2} = 0$$

When effort(n) = cn, $n = \frac{1}{2c} - \frac{\sigma^2}{\sigma_0^2}$

- Unpacking s is trivial, e.g. $x_1 = \ldots = x_n = s/n$
- Teacher will choose not to teach if the learner initially had a "narrow mind": $\sigma_0^2 < 2c\sigma^2$.

Example 5

Teaching a multinomial distribution.

$$\min_{\mathbf{s}} -\log \Gamma \left(\sum_{k=1}^{K} (\beta_k + s_k) \right) + \sum_{k=1}^{K} \log \Gamma(\beta_k + s_k)$$
$$- \sum_{k=1}^{K} (\beta_k + s_k - 1) \log \pi_k^* + \text{effort}(\mathbf{s})$$

- Example: world $\pi^* = (\frac{1}{10}, \frac{3}{10}, \frac{6}{10})$
- Learner "wrong" Dirichlet prior $\beta = (6, 3, 1)$
- If effort(\mathbf{s}) = 0, "brute-force teaching" $\mathbf{s} = (317, 965, 1933)$
- If effort(\mathbf{s}) = $0.3 \sum_{k=1}^{K} s_k$,
- $\mathbf{s} = (0, 2, 8), TI = 2.65.$
- Not $\mathbf{s} = (1, 3, 6), TI = 4.51$. doesn't correct prior
- Not $\mathbf{s} = (317, 965, 1933), TI = 956.25$

Example 6

Teaching a multivariate Gaussian.

- World $N(\mu^* = (\mathbf{0}, \mathbf{0}, \mathbf{0}), \Sigma^* = I)$
- Learner Normal-Inverse-Wishart prior $\mu_0 = (1, 1, 1), \kappa_0 = 1, \nu_0 = 2 + 10^{-5}, \Lambda_0 = 10^{-5}I.$
- "Expensive" effort(\mathcal{D}) = n
- Optimal \mathcal{D} with n=4, unpacked into a tetrahedron

Teaching Dimension is a Special Case

- Given concept class $C = \{c\}$, define $P(y = 1 \mid x, \theta_c) = [c(x) = +] \text{ and } P(x) \text{ uniform.}$
- The world has $\theta^* = \theta_{c^*}$
- The learner has $\Theta = \{\theta_c \mid c \in C\}, p_0(\theta) = \frac{1}{|C|}$.
- $P(\theta_c \mid \mathcal{D}) = \frac{1}{|c \in C \text{ consistent with } \mathcal{D}|}$ or 0.
- Teaching dimension [Goldman & Kearns'95] $TD(c^*)$ is the minimum cardinality of \mathcal{D} that uniquely identifies the target concept:

$$\min_{\mathcal{D}} - \log P(\theta_{c^*} \mid \mathcal{D}) + \gamma |\mathcal{D}|$$

where $\gamma \leq \frac{1}{|C|}$.

The solution \mathcal{D} is a minimum teaching set for c^* , and $|\mathcal{D}| = TD(c^*)$.