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Machine Teaching

Machine teaching: finding the best training set.
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passive learning "waits" active learning "explores"

- World: test items z “° p(z | 6%).
« Learner: hypothesis space ©

teaching "guides"

« Teacher: knows 6%, ©, learning algorithm,
teaches by creating a training set D.

Optimal Teaching Key Idea

min loss(fp, 8%) + effort(D)

D

= effort() of the teacher/learner to work with D.
= Not regularized estimation: 6* given.

« Hard combinatorial optimization
« Objective called Teaching Impedance T'I(D)

Teaching Bayesian Learners

« Teacher knows learner prior py(6) and likelihood
p(D | 0), can design non-itd D
= loss(fp, 0%) = KL (0g+||p(0 | D))

e

« Teaching is to

min — log p(6™ | D)

= Not MAP estimate! Still hard.

effort(D).

Teaching Bayesian Learners in the
Exponential Family

« Exponential family
(x| 6) = hlz)exp (67T (x) — A(6))
« For D = {xy,...,x,} the likelihood is

p(D | 6) =11 Alz:) exp (0's — A(0))
with ageregate sufficient statistics
s => T(x)
i=1

« 'Two-step algorithm:
O finding aggregate sufficient statistics
® unpacking

Step 1: Suflicient Statistics

- Conjugate prior p(6 | A1, Ag) =
ho(6) exp (A 6 — AA(0) — Ap(A1, M)

« D enters the posterior only via s and n:

exp (()\1 -+ S)T(Q — ()\2 -+ TL)A(@) — AO()\l + 8, Ao + TL))

« Optimal teaching problem
min —6* (A1 + ) + A0")(X2 + n)
+Ap(A1 + 8, Ay + n) + effort(n, s)

- Convex relaxation: n € R and s € RY

Step 2: Unpacking

o Round n < max(0, [n|)

o Find n teaching examples whose aggregate
sufficient statistics is approximately s:

. initialize z; plx |0%),1=1...n

= solve ming, . ||s — 3%, T'(x;)||* (nonconvex)

Some unpacking examples:

« Exponential dist T(:E) — X T = %

« Poisson dist T'(z) = x (integers): rounding

- Gaussian dist T'(z) = (z,2%), n = 3,8 = (3,5):
{5131 — 0,5132 — 1,2133 — 2} or
{21 =529 = 5+}L/E, T3 = 5_41@}

Example 1

Teaching a 1D threshold classifier.
« Learner pp(0) =1, p(y =1 | z,0) = 1,59
= p(0 | D) uniform in [max;.,.—1(x;), min.,—(x;)]
« effort(D) = ¢|D|
« The optimal teaching problem becomes
1

min

« One solution: D = {(0* —¢/2,—1), (0" +€¢/2,1)}
as € — 0 with T'1 = log(e) + 2¢ — —o0
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Example 2

Learner can’t tell similar items

effort(D) = -

miﬂxi7xj€p ‘CCZ — Zlfj‘

« With D ={(0* —¢/2,—1), (0" +€¢/2,1)},
TI = log(€) + ¢/e with minimum at € = c.

D ={(6° —¢/2,—1), (0" +¢/2,1)}.

Example 3

Teaching to pick a Gaussian out of two

O ={01=N(—1,5).05=N(3,5)} 0" =04
po(0a) = po(0B) = 5

= loss(D) = log (1 4 T/, exp(x;)) minimized by
x; — —o00, weird items.

- Box constraints x; € |—d, d:
min  log (1 + 11 exp(xi)) +cn+ D> (x| < d)
o i=1 i=1
= dolution: m = max (O, [é log (‘—Z — 1)}), X1p = —d
- Note n = 0 when ¢ > & the effort of teaching

outweighs the benefit. The teacher will choose
not to teach, leaving learner with its prior py!

Example 4

Teaching the mean of a univariate Gaussian.

- The world is N (x; u*, o%)

- Learner’s prior po(p) = N(u | po, 05), knows o
T(x)==x

« Agoregate sufficient statistics solution

0.2

s = —(p" — po) + p'n
ol

Note 2 # p*: compensating for the learner’s
(wrong) prior belief pi.

2

= 1 1S the solution to

1 | 0°
2effort' (n) | of !
When effort(n) = c¢n, n = o gg
- Unpacking s is trivial, e.g. 1= ... =x, = s/n

= Teacher will choose not to teach if the learner
initially had a “narrow mind”: of < 2co”.

Example 5
Teaching a multinomial distribution.
K K
min —log I (Z (8K + Sk)) + > log I'( Bk + si)
k=1 k=1

K
— > (Br + s — 1) log m}, + effort(s)
h=1

1 3 6)
107 107 10

« Learner “wrong” Dirichlet prior 5 = (6, 3, 1)

« Example: world 7* = (

= If effort(s) = 0, “brute-force teaching”
s = (317,965, 1933)
- If effort(s) = 0.3 28, sy,
s =(0,2,8), TI = 2.65
- Not s = (1,3,6), TIT = 4.51. doesn’t correct prior
. Not s = (317, 965, 1933), TT = 956.25

Example 6

Teaching a multivariate Gaussian.

- World N(u* = (0,0,0),>* =1T)

» Learner Normal-Inverse-Wishart prior

o= (1,1,1), kg =1,y =2+ 107", Ag = 107°1.
« “Expensive” effort(D) = n

« Optimal D with n = 4, unpacked into a
tetrahedron

Teaching Dimension is
a Special Case

= Given concept class C' = {c}, define
Ply=1]=z,60.) = |c(x) = +]| and P(x) uniform.

« The world has 0 = 6 -

- The learner has © = {0.| c € C}, po(0) = +.

C]
1
« P(0.| D) = lceC consistent with D or U.
« Teaching dimension [Goldman & Kearns'95] T'D(c*) is
the minimum cardinality of D that uniquely identifies the
target concept:

ngn—log PO | D)+ ~|D

where v < |—(1j|

= The solution D is a minimum teaching set for ¢*, and
'D| =TD(c).



