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Machine Teaching

Machine teaching: finding the best training set.
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passive learning "waits" active learning "explores" teaching "guides"

•World: test items x iid∼ p(x | θ∗).
•Learner: hypothesis space Θ
•Teacher: knows θ∗, Θ, learning algorithm,
teaches by creating a training set D.

Optimal Teaching Key Idea

min
D

loss(f̂D, θ∗) + effort(D)

• effort() of the teacher/learner to work with D.
•Not regularized estimation: θ∗ given.
•Hard combinatorial optimization
•Objective called Teaching Impedance TI(D)

Teaching Bayesian Learners

•Teacher knows learner prior p0(θ) and likelihood
p(D | θ), can design non-iid D

• loss(f̂D, θ∗) = KL (δθ∗‖p(θ | D))
•Teaching is to

min
D
− log p(θ∗ | D) + effort(D).

•Not MAP estimate! Still hard.

Teaching Bayesian Learners in the
Exponential Family

•Exponential family
p(x | θ) = h(x) exp

(
θ>T (x)− A(θ)

)
•For D = {x1, . . . , xn} the likelihood is

p(D | θ) =
n∏
i=1
h(xi) exp

(
θ>s− A(θ)

)
with aggregate sufficient statistics

s ≡
n∑
i=1
T (xi)

•Two-step algorithm:
1 finding aggregate sufficient statistics
2 unpacking

Step 1: Sufficient Statistics

•Conjugate prior p(θ | λ1, λ2) =
h0(θ) exp

(
λ>1 θ − λ2A(θ)− A0(λ1, λ2)

)
•D enters the posterior only via s and n:

exp
(
(λ1 + s)>θ − (λ2 + n)A(θ)− A0(λ1 + s, λ2 + n)

)
•Optimal teaching problem

min
n,s −θ

∗>(λ1 + s) + A(θ∗)(λ2 + n)
+A0(λ1 + s, λ2 + n) + effort(n, s)

•Convex relaxation: n ∈ R and s ∈ RD

Step 2: Unpacking

1 Round n← max(0, [n])
2 Find n teaching examples whose aggregate
sufficient statistics is approximately s:
• initialize xi iid∼ p(x | θ∗), i = 1 . . . n.
• solve minx1,...,xn ‖s−

∑n
i=1 T (xi)‖2 (nonconvex)

Some unpacking examples:
•Exponential dist T (x) = x: xi = s

n

•Poisson dist T (x) = x (integers): rounding
•Gaussian dist T (x) = (x, x2), n = 3, s = (3, 5):
{x1 = 0, x2 = 1, x3 = 2} or
{x1 = 1

2, x2 = 5+
√

13
4 , x3 = 5−

√
13

4 }

Example 1

Teaching a 1D threshold classifier.
•Learner p0(θ) = 1, p(y = 1 | x, θ) = 1x≥θ
• p(θ | D) uniform in [maxi:yi=−1(xi),mini:yi=1(xi)]
• effort(D) = c|D|
•The optimal teaching problem becomes

min
n,(xi,yi)1:n

− log
 1

mini:yi=1(xi)−maxi:yi=−1(xi)

+cn.

•One solution: D = {(θ∗ − ε/2,−1), (θ∗ + ε/2, 1)}
as ε→ 0 with TI = log(ε) + 2c→ −∞

Example 2

Learner can’t tell similar items
effort(D) = c

minxi,xj∈D |xi − xj|

•With D = {(θ∗ − ε/2,−1), (θ∗ + ε/2, 1)},
TI = log(ε) + c/ε with minimum at ε = c.

•D = {(θ∗ − c/2,−1), (θ∗ + c/2, 1)}.

Example 3

Teaching to pick a Gaussian out of two
• Θ = {θA = N(−1

4,
1
2), θB = N(1

4,
1
2)}, θ

∗ = θA,
p0(θA) = p0(θB) = 1

2
• loss(D) = log (1 + ∏n

i=1 exp(xi)) minimized by
xi→ −∞, weird items.

•Box constraints xi ∈ [−d, d]:

min
n,x1:n

log
1 +

n∏
i=1

exp(xi)
 + cn +

n∑
i=1

I(|xi| ≤ d)

•Solution: n = max
(
0,
[1
d log

(
d
c − 1

)])
, x1:n = −d

•Note n = 0 when c ≥ d
2: the effort of teaching

outweighs the benefit. The teacher will choose
not to teach, leaving learner with its prior p0!

Example 4

Teaching the mean of a univariate Gaussian.
•The world is N(x;µ∗, σ2)
•Learner’s prior p0(µ) = N(µ | µ0, σ

2
0), knows σ2

•T (x) = x

•Aggregate sufficient statistics solution

s = σ2

σ2
0
(µ∗ − µ0) + µ∗n

Note s
n 6= µ∗: compensating for the learner’s

(wrong) prior belief µ0.
•n is the solution to

n− 1
2 effort′(n)

+ σ2

σ2
0

= 0

When effort(n) = cn, n = 1
2c −

σ2

σ2
0

•Unpacking s is trivial, e.g. x1 = . . . = xn = s/n

•Teacher will choose not to teach if the learner
initially had a “narrow mind”: σ2

0 < 2cσ2.

Example 5

Teaching a multinomial distribution.

mins − log Γ
 K∑
k=1

(βk + sk)
 +

K∑
k=1

log Γ(βk + sk)

−
K∑
k=1

(βk + sk − 1) log π∗k + effort(s)

•Example: world π∗ = ( 1
10,

3
10,

6
10)

•Learner “wrong” Dirichlet prior β = (6, 3, 1)
• If effort(s) = 0, “brute-force teaching”

s = (317, 965, 1933)
• If effort(s) = 0.3∑K

k=1 sk,
• s = (0, 2, 8), TI = 2.65.
• Not s = (1, 3, 6), TI = 4.51. doesn’t correct prior
• Not s = (317, 965, 1933), TI = 956.25

Example 6

Teaching a multivariate Gaussian.
•World N(µ∗ = (0,0,0),Σ∗ = I)
•Learner Normal-Inverse-Wishart prior
µ0 = (1, 1, 1), κ0 = 1, ν0 = 2 + 10−5,Λ0 = 10−5I .

• “Expensive” effort(D) = n

•Optimal D with n = 4, unpacked into a
tetrahedron
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Teaching Dimension is
a Special Case

•Given concept class C = {c}, define
P (y = 1 | x, θc) = [c(x) = +] and P (x) uniform.

•The world has θ∗ = θc∗

•The learner has Θ = {θc | c ∈ C}, p0(θ) = 1
|C|.

•P (θc | D) = 1
|c∈C consistent with D| or 0.

•Teaching dimension [Goldman & Kearns’95] TD(c∗) is
the minimum cardinality of D that uniquely identifies the
target concept:

min
D
− logP (θc∗ | D) + γ|D|

where γ ≤ 1
|C|.

•The solution D is a minimum teaching set for c∗, and
|D| = TD(c∗).


