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Machine learning ↔ human learning

I Learning capacity and generalization bounds

I Beyond supervised learning: semi-supervised, active

I Beyond learning: teaching



Capacity

VC-dimension

I F : a family of binary classifiers

I VC-dimension V C(F ): size of the largest set that F can
shatter

I With probability at least 1− δ,

sup
f∈F

R(f)−Rn(f) ≤ 2

√
2
V C(F ) log n+ V C(F ) log 2e

V C(F ) + log 2
δ

n
.

I R(f): error of f in the future

I Rn(f): error of f on a training set of size n



Capacity

Rademacher complexity

I σ1, . . . , σn : P (σi = 1) = P (σi = −1) = 1
2

I Rademacher complexity

Radn(F ) = Eσ,x

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
)
.

I With probability at least 1− δ,

sup
f∈F
|Rn(f)−R(f)| ≤ 2Radn(F ) +

√
log(2/δ)

2n
.



Machine learning → human learning

I f : you categorize x by f(x)

I F : all the classifiers in your mind

I Rn(f): how did you do in class

I R(f): how well can you do outside class
I Capacity: can we measure it in humans?

I V C(F ): too brittle (find one dataset of size n) and
combinatorial (verify shattering)

I Others may behave better, e.g., Radn(F )



Measuring human Rademacher complexity
“learning random labels” (x1, σ1) . . . (xn, σn), e.g., (grenade, B),
(skull, A), (conflict, A), (meadow, B), (queen, B)

Radn(F ) ≈ 1
m

∑m
j=1

∣∣∣ 1n∑n
i=1 σ

(j)
i f̂ (j)(x

(j)
i )
∣∣∣

I f̂ mnemonics: “a queen was sitting in a meadow and then a
grenade was thrown (B = before), then this started a conflict
ending in bodies & skulls (A = after).”

I f̂ wrong rules: (daylight, A), (hospital, B), (termite, B),
(envy, B), (scream, B), “anything related to omitting[sic]
light”
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Overfitting indicator
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I e test set error, ê training set error
I generalization error bound holds
I actual overfitting tracks bound (nice but not predicted by

theory)

The study of capacity may

I constrain cognitive models
I understand groups differ in age, health, education, etc.



Human semi-supervised learning

I Humans learn supervised first, then

I . . . decision boundary shifts to distribution trough in test data

I Can be explained by a variety of semi-supervised machine
learning models
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Human semi-supervised learning, the other way around
Human unsupervised learning first
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Active learning

Passive learning (slow)

inf
θ̂n

sup
θ∈[0,1]

E[|θ̂n − θ|] ≥
1

4

(
1 + 2ε

1− 2ε

)2ε 1

n+ 1

Active learning (fast)

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2

(√
1

2
+
√
ε(1− ε)

)n



Active learning → humans

noise ε = 0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.4

Human
Passive
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Machine teaching

Example: a threshold classifier in 1D

I passive learning (xi, yi)
iid∼ p, risk ≈ O( 1

n)

I active learning risk ≈ 1
2n

I taught: n = 2. Teaching dimension

I curriculum learning



Human teacher behaviors

strategy boundary curriculum linear positive

“graspability” (n = 31) 0% 48% 42% 10%
“lines” (n = 32) 56% 19% 25% 0%



A framework for teaching a Bayesian learner

1. World: p(x, y | θ∗), loss function `(f(x), y)

2. Learner: Bayesian.
I prior over Θ (θ∗ ∈ Θ), likelihood p(x, y | θ)
I maintains posterior p(θ | data) by Bayesian update
I makes prediction f(x | data) using the posterior

3. Teacher:
I clairvoyant, knows everything above
I can only teach by examples (x, y)
I goal: choose the least-effort teaching set D = (x, y)1:n to

minimize the learner’s future loss (risk):

Eθ∗ [`(f(x | D), y)] + effort(D)

I if the future loss approaches Bayes risk, D is a teaching set
and n is the (generalized) teaching dimension
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