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Machine learning <+ human learning

» Learning capacity and generalization bounds
» Beyond supervised learning: semi-supervised, active

» Beyond learning: teaching



Capacity

VC-dimension
» F: a family of binary classifiers

» VC-dimension VC(F): size of the largest set that F' can
shatter

» With probability at least 1 — 9,

sup R(f)—Rn(f) <2

fer n

\/QVC’(F) logn + VC(F)log VC( )+log5

> R(f): error of f in the future

» R, (f): error of f on a training set of size n



Capacity

Rademacher complexity
> 01,...,0n: Plo; =1)=P(o; =—1) =

» Rademacher complexity

Rad,(F) = (sup

eF

nZazf x;)

» With probability at least 1 — 9,

up [, (f) — R(f)| < 2Rady (F) + 1/ 2520)
feFr n



Machine learning — human learning

» f: you categorize x by f(z)

v

F: all the classifiers in your mind
R, (f): how did you do in class

R(f): how well can you do outside class

v

v

v

Capacity: can we measure it in humans?

» VC(F): too brittle (find one dataset of size n) and
combinatorial (verify shattering)
» Others may behave better, e.g., Rad,, (F)



Measuring human Rademacher complexity

“learning random labels" (z1,01)...(zn,0n), e.g., (grenade, B),
(skull, A), (conflict, A), (meadow, B), (queen, B)

Rady(F) = 3 7 [ Sy 0 f0) )

m £<j=1|n
> f mnemonics: “a queen was sitting in a meadow and then a
grenade was thrown (B = before), then this started a conflict
ending in bodies & skulls (A = after).”
» f wrong rules: (daylight, A), (hospital, B), (termite, B),
(envy, B), (scream, B), “anything related to omitting][sic]
light”
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Overfitting indicator
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Rademacher complexity

> e test set error, é training set error
» generalization error bound holds
» actual overfitting tracks bound (nice but not predicted by
theory) o
The study of capacity may
» constrain cognitive models
» understand groups differ in age, health, education, etc.



Human semi-supervised learning

» Humans learn supervised first, then
» ... decision boundary shifts to distribution trough in test data

» Can be explained by a variety of semi-supervised machine
learning models
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Human semi-supervised learning, the other way around
Human unsupervised learning first
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Active learning

L q Pr(y =1]X =2)
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Passive learning (slow)

A 1/14+2\* 1
inf sup E[d, — 6]] > - ( - )
fn 0€[0,1] 4 \1— 2 n+1

Active learning (fast)

sup E[|0, —0]] <2 L e(1—e)
0€[0,1] 2



Active learning — humans

noise
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Machine teaching

Example: a threshold classifier in 1D

» passive learning (x;,y;) iifip, risk = O(%)

I D

-
O(1/n)

> active learning risk ~ 5~

le
)
O(1/2%

» taught: n = 2. Teaching dimension
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Human teacher behaviors
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A framework for teaching a Bayesian learner

1. World: p(z,y | 8*), loss function £(f(x),y)
2. Learner: Bayesian.
» prior over O (0* € ©), likelihood p(x,y | 0)
» maintains posterior p( | data) by Bayesian update
» makes prediction f(x | data) using the posterior
3. Teacher:
» clairvoyant, knows everything above
» can only teach by examples (z,y)

» goal: choose the least-effort teaching set D = (z,y)1., to
minimize the learner’s future loss (risk):

Eg«[¢(f(z | D),y)] + effort(D)

» if the future loss approaches Bayes risk, D is a teaching set
and n is the (generalized) teaching dimension
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