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Markov Decision Process (MDP)

AMarkov Decision Process (MDP) is defined as a tuple (S, A, P, R, γ):
S is the state space

A is the action space

P : S × A → ∆S is the transition kernel

R : S × A → R is the reward function

γ ∈ [0, 1) is the discounting factor.
The learning goal inMDP is to find a policy π that maximizes the cumulative discounted reward:

Qπ(s, a) = E[
∞∑

τ=0
γτR(sτ , aτ ) | s0 = s, a0 = a, π]

The optimal value function is characterized by the Bellman optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′).

The optimal policy is π∗(s) ∈ arg maxa∈A Q∗(s, a).

Model-based Batch Reinforcement Learner

Step 1. The learner estimates anMDP M̂ = (S, A, P̂ , R̂, γ) from a training setD.

Maximum likelihood estimate for the transition kernel: P̂ ∈ arg maxP
∑T−1

t=0 log P (s′
t|st, at).

Least-squares estimate for the reward function: R̂ = arg minR
∑T−1

t=0 (rt − R(st, at))2.
Step 2. The learner finds the optimal policy π̂ that maximizes the expected discounted cumulative

reward on the estimated environment M̂ , i.e.,

π̂ ∈ arg max
π:S7→A

E
P̂

∞∑
τ=0

γτ R̂(sτ , π(sτ )),

Policy Poisoning: Threat Model

Knowledge of the attacker. The attacker has access to the original training set D0 =
(st, at, r0

t , s′
t)t=0:T−1. The attacker knows themodel-based RL learner’s algorithm.

Available actions of the attacker. The attacker is allowed to arbitrarily modify the rewards r0 =
(r0

0, ..., r0
T−1) inD0 into r = (r0, ..., rT−1).

Attacker’s goals. The attacker has a pre-specified target policy π†. The attack goals are to (1)

force the learner to learn π†, (2) minimize attack cost ‖r − r0‖α under an α-norm chosen by the

attacker.

A Unified Formulation of Policy Poisoning

We give a unified framework for policy poisoning based on bi-level optimization:

min
r,R̂

‖r − r0‖α

s.t. R̂ = arg min
R

T−1∑
t=0

(rt − R(st, at))2

{π†} = arg max
π:S7→A

E
P̂

∞∑
τ=0

γτ R̂(sτ , π(sτ )).

The singleton set {π†} on the LHS of (1) ensures that the target policy is learned uniquely.

Policy Poisoning on Tabular Certainty Equivalence (TCE)

Step 1 of TCE: P̂ (s′ | s, a) = 1
|Ts,a|

∑
t∈Ts,a

1
[
s′
t = s′] , R̂(s, a) = 1

|Ts,a|
∑

t∈Ts,a

rt.

Attack Goal: Q(s, π†(s)) > Q(s, a), ∀s ∈ S, ∀a 6= π†(s).
Definition. The set of ε-robustQ functions induced by a target policy π† is the polytope

Qε(π†) = {Q : Q(s, π†(s)) ≥ Q(s, a) + ε, ∀s ∈ S, ∀a 6= π†(s)}.

Instantiating attack on TCE:

min
r∈RT ,R̂,Q∈R|S|×|A|

‖r − r0‖α

s.t. R̂(s, a) = 1
|Ts,a|

∑
t∈Ts,a

rt

Q(s, a) = R̂(s, a) + γ
∑
s′

P̂
(
s′|s, a

)
Q
(

s′, π†(s′)
)

, ∀s, ∀a

Q(s, π†(s)) ≥ Q(s, a) + ε, ∀s ∈ S, ∀a 6= π†(s).

Experimental results:
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(a) A toyMDPwith two states.
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(c) PoisonedQ values.
(d) Trajectory for theQ values of state

A during value iteration.

Figure 1. Poisoning a two-stateMDP
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(a) Single terminal stateG.
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(b) Two terminal statesG1 andG2.

Figure 2. Poisoning TCE in grid-world tasks.

Theorem. Assume α ≥ 1. Let r∗, R̂∗ andQ∗ be an optimal solution to the attack, then

1
2
(1 − γ)∆(ε)

(
min
s,a

|Ts,a|
) 1

α
≤ ‖r∗ − r0‖α ≤ 1

2
(1 + γ)∆(ε)T

1
α.

Policy Poisoning on Linear Quadratic Regulator (LQR)

The linear dynamical system is

st+1 = Ast + Bat + wt, ∀t ≥ 0,

The cost function isL(s, a) = 1
2s>Qs + q>s + a>Ra + c.

Step 1 of LQR:

(Â, B̂) ∈ arg min
(A,B)

1
2

T−1∑
t=0

‖Ast + Bat − st+1‖2
2

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

1
2

T−1∑
t=0

‖1
2
s>
t Qst + q>st + a>

t Rat + c + rt‖2
2.

Optimal policy: âτ = π̂(sτ ) = Ksτ + k, where

K = −γ
(

R̂ + γB̂>XB̂
)−1

B̂>XÂ, k = −γ(R̂ + γB̂>XB̂)−1B̂>x.

X � 0 satisfies Algebraic Riccati Equation:

X = γÂ>XÂ − γ2Â>XB̂
(

R̂ + γB̂>XB̂
)−1

B̂>XÂ + Q̂,

and x satisfies x = q̂ + γ(Â + B̂K)>x.

Instantiating attack on LQR:

min
r,Q̂,R̂,q̂,ĉ,X�0,x

‖r − r0‖α

s.t. − γ
(

R̂ + γB̂>XB̂
)−1

B̂>XÂ = K†

− γ
(

R̂ + γB̂>XB̂
)−1

B̂>x = k†

X = γÂ>XÂ − γ2Â>XB̂
(

R̂ + γB̂>XB̂
)−1

B̂>XÂ + Q̂

x = q̂ + γ(Â + B̂K†)>x

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

T−1∑
t=0

∥∥∥∥1
2
s>
t Qst + q>st + a>

t Rat + c + rt

∥∥∥∥2

2
.

Experimental results:

(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 3. Poisoning a vehicle running LQR in 4D state space.

Conclusion

We presented a policy poisoning framework against batch reinforcement learning and control.

We showed the attack problem can be formulated as convex optimization.

We provided theoretical analysis on attack feasibility and cost.

We empirically show the attack is both effective and efficient.
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