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• Adversarial RL review


• Case 1: robustness to backdoor RL attacks


• Case 2: robustness to Huber’s contamination


• Robustness of game theory



Why RL?

• Lifting classification to sequential decision making


• Earlier decisions have future effects


• Adversaries may react by modifying their attacks


• A human-machine team is always stateful (human mental state, trust, 
fatigue, confidence…)


• Neural net parameters may change by self-training



Reinforcement learning review



RL definition
Markov Decision Process (MDP)


• : state


• : action


• : reward


• : next state
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s′ 

Agent

Environment MDP

reward rstate s action a



RL definition (cont.)
• : agent policy on how to act  

• Interaction protocol:


1. : initial state distribution


2. FOR 


, , 


• Goal: find optimal policy  to maximize the value 


π π(s) = a

s1 ∼ μ

h = 1…H

ah ∼ π(sh) rh ∼ R(sh, ah) sh+1 ∼ P( ⋅ ∣ sh, ah)

π* max
π

Vπ := 𝔼 [
H

∑
h=1

rh ∣ π]

Agent

Environment MDP

reward rstate s action a



Classification is a special case of RL

RL Classification

state s Input x

action a label y 

policy classifier f 

reward r loss         

π

ℓ( f(x), y)

RL transition:

sh+1 ∼ P( ⋅ ∣ sh, ah)

Classification has a trivial transition:

xh+1 ∼ PX( ⋅ )

Earlier actions have future effects


Same Different



Adversarial RL review



Recall: Test-time attack on classification



Recall: training set poisoning on classification



Recall: adversarial training on classification



Familiar adversarial learning settings 
(for classification)

Test time attack Training set poisoning (attack) Adversarial training (defense)

Given  and learning 
algorithm , find  such that 

 returns a bad classifier 

D = (x, y)n
Alg Δ

Alg(D + Δ)

Given   augment each 
 with  for all small  
to form .  Run 

D = (x, y)n
(xi, yi) (xi + δ, yi) δ

D′ Alg(D′ )

Given classifier  and input , find  
such that 

f x δ
f(x) ≠ f(x + δ)

x
δ

Decision regions of f



Adversarial RL has these settings, too
Test time attack Training set poisoning (attack) Adversarial training (defense)

Given classifier  and input , find  
such that 

f x δ
f(x) ≠ f(x + δ)

Given  and learning 
algorithm , find  such that 

 returns a bad classifier 

D = (x, y)n
Alg Δ

Alg(D + Δ)

Given   augment each 
 essentially with  for 

all small  to form .  Run 

D = (x, y)n
(xi, yi) (xi + δ, yi)

δ D′ Alg(D′ )

Given policy  and state , find  
such that 

π s δ
π(s) ≠ π(s + δ)

Given  and algorithm 
, find  such that  

returns a bad policy 

D = (s, a, r, s′ )n
RL Δ RL(D + Δ)

Given , run  D + Δ
robustRL(D + Δ) ≈ RL(D)

Attack RL goals: bad policy, bad action, bad value




RL has more attack surfaces

Agent

Environment MDP

poisoned reward r + δstate s action a

reward r

[Zhang+Ma+Singla+Z ICML20]

Reward poisoning attack:



RL has more attack surfaces

Agent

Environment MDP

state s

action a = π(s†)reward r

[McMahan+Wu+Z+Xie AAAI24]

Perceived state attack:

perceived state s†

s′ ∼ P( ⋅ ∣ s, a)
r ∼ R(s, a)



RL has more attack surfaces

Agent

Environment MDP

state s

action a = π(s†)reward r

[McMahan+Wu+Z+Xie AAAI24]

True state attack:

true state s†

s′ ∼ P( ⋅ ∣ s†, a)
r ∼ R(s†, a)



RL has more attack surfaces

Agent

Environment MDP

state s

action a

reward r

[McMahan+Wu+Z+Xie AAAI24]

Action attack:

s′ ∼ P( ⋅ ∣ s, a†)
r ∼ R(s, a†)

replaced action a†



The attack surfaces can be combined
Agent

Environment MDP

state s

action a

reward r

[McMahan+Wu+Z+Xie AAAI24]

Attacks can be online (sequential) or offline (on batch dataset)


Attack RL goals: bad policy, bad action, bad value




Defending RL

• Test time: Agent is running a fixed, deployed policy .  


• Training time: Agent is learning the policy.  


• Make both less vulnerable to adversarial RL attacks. 


• Many approaches


• Two case studies next

π



Case 1: robust to backdoor RL



Example: Breakout

state s

action  {left, no-op, right}a = π(s) ∈

H

∑
h=1

rhcumulative reward



Backdoor policy attack

• You cannot afford to train the optimal policy 


• You download a “good” policy  from dubiousAI.com


• Indeed  for all normal states 


• But when the attacker adds a special trigger to ,  returns “no-op”

π*

π†

π†(s) = π*(s) s

s π†



Backdoor policy attack

action  = no-opa = π†(s+trigger)



demo: https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4 

https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4


Sanitizing the backdoor policy π†

• Key assumption: we can run  in a sandbox environment where the 
attacker cannot add triggers


• Collect the states visited by 


• Find principal directions with SVD

π†

π†

[Bharti+Zhang+Singla+Z, NeurIPS22]



Sanitizing the backdoor policy π†

• Then, in the wild, project all states (triggered or not) onto the principal 
directions


• Run  on the projected states.  
It’s safe.


• No need to retrain 

π†

π†

[Bharti+Zhang+Singla+Z, NeurIPS22]



Case 2: robust to Huber’s 
contamination



Demo: https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md 

https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md


Example: half-cheetah
Attack: in 1% of the episodes, all rewards 
rt ← − 100rt

TRPO

Ours

Cheetah runs backward


Cheetah runs forward


[Zhang+Chen+Z+Sun ICML21]



Huber’s contamination model
• During training, RL experiences  episodes.  Each episode is 




• Up to  fraction of training episodes can be corrupted.  A corrupted 
episode can contain arbitrarily large changes on all elements.

T
(s1, a1, r1, s2, …sH, aH, rH, sH+1)

ϵ

episode 1 
episode 2 
episode 3 (corrupted) 
episode 4 
episode 5 
… 
episode T (corrupted)



RL and linear regression

• One popular RL training algorithm is Policy Gradient


• Policies are softmax parametrized: 


• Policy Gradient algorithm: run gradient ascent to maximize 



• The gradient estimate  involves linear regression from episodic data

πθ(a ∣ s) =
exp(θ⊤ϕ(s, a))

∑b∈A exp(θ⊤ϕ(s, b))

Vπθ

θ ← θ + η∇Vπθ

∇Vπθ



Our method: Filtered Policy Gradient
• Policy gradient, but with robust linear regression subroutine


• Under -fraction episode contamination, guarantees  near-optimal 
policy

ϵ O(ϵ1/4)

[Zhang+Chen+Z+Sun ICML21]

corrupted

robust



Robustness of Game Theory

• A future is looming with many AI agents from different vendors


• No more central control


• AI agents will be independent, rational, and even selfish, fixated on 
maximizing its own utility


• Game theory and mechanism design will be part of their protocol


• Can an adversary attack a game to force AI agents do bad things?



Example: Rock-Paper-Scissors
Attack goal: make Rock-Rock appear to be the Nash equilibrium


R P S

R 0 -1 1

P 1 0 -1

S -1 1 0

Original game 
Nash=uniform

R P S

R 0 0.01 1

P -0.01 0 -1

S -1 1 0

Minimally attacked game 
Nash=Rock-Rock

[Wu+McMahan+Chen+Chen+Z+Xie ICML24]


