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Why RL?

» Lifting classification to sequential decision making

e Earlier decisions have future effects
 Adversaries may react by modifying their attacks

A human-machine team is always stateful (human mental state, trust,
fatigue, confidence...)

* Neural net parameters may change by self-training



Reinforcement learning review



RL definition

Markov Decision Process (MDP)
A

e §: State | >
state s reward r action a
e : action [ Environment MDP

e 7:reward

e 5" next state



RL definition (cont.)

i agent policy on how to act 7(s) = a

—_—)
* |Interaction protocol:
state s reward r action a
1. §1 ~ p:initial state distribution [ Environment MDP

2. FORh=1...H

Clh ~/ ﬂ'(Sh), I”h ~/ R(Sh’ Clh), Sh 1 ~/ P( . ‘ Sh’ Clh)

_ Goal: find optimal policy 7™ to maximize the value max V* := [ Z r, |
T
h=1



Classification is a special case of RL

Same

Classification

state s Input x
action a label y
policy T classifier f
reward r loss
£(f(x),y)

Different

Classification has a trivial transition:

Xppp ~ Py(+)

RL transition:
Spe1 ~ PC- | s, ay)

Earlier actions have future effects




Adversarial RL review



Recall: Test-time attack on classification

Decision regions of f



Recall: training set poisoning on classification




Recall: adversarial training on classification




Familiar adversarial learning settings
(for classification)

Test time attack Training set poisoning (attack) Adversarial training (defense)

Given classifier f and input x, find o Given D = (x, y), and learning Given D = (x,y), augment each
such that f(x) # f(x + 0) algorithm Alg, find A such that (x;, ;) with (x; + 0, y,) for all small 6
Alg(D + A) returns a bad classifier to form D’. Run Alg(D’)
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Decision regions of f




Test time attack

Training set poisoning (attack)

Adversarial RL has these settings, too

Adversarial training (defense)

Given classifier f and input x, find o

such that f(x) # f(x + 0)

Given policy 7 and state s, find 0
such that z(s) # (s + 0)

Given D = (x, y), and learning
algorithm Alg, find A such that
Alg(D + A) returns a bad classifier

Given D = (s,a,r,s’), and algorithm

RL, find A such that RL(D + A)
returns a bad policy

Given D = (x,y), augment each
(x;, ;) essentially with (x; + 0, y;) for
all small 6 to form D'. Run Alg(D’)

Given D + A, run
robustRL(D + A) ~ RL(D)

Attack RL goals: bad policy, bad action, bad value




RL has more attack surfaces

Reward poisoning attack:

—_—

state s | poisoned reward 7 + O action a

2
k]

reward r

[ Environment MDP

[Zhang+Ma+Singla+Z ICML20]



RL has more attack surfaces

Perceived state attack:

—
perceived state st

: — i
: reward r action a = n(s')

state s

[ Environment MDP

s'~P(-|s,a)
r ~ R(s,a)

[McMahan+Wu+Z+Xie AAAI24]



RL has more attack surfaces

True state attack:

true state SJr

reward r action a = 7(s")

state s

[ Environment MDP

s~ P(-|sT, a)

ro~ R(ﬂ a)

[McMahan+Wu+Z+Xie AAAI24]



RL has more attack surfaces

Action attack:

action a

state s reward r

replaced action al

Environment MDP

s'~P(-|s,a’
rNR(s,aT)

[McMahan+Wu+Z+Xie AAAI24]



The attack surfaces can be combined

action a

\

\

reward r

[ Environment MDP

Attacks can be online (sequential) or offline (on batch dataset)

Attack RL goals: bad policy, bad action, bad value

[McMahan+Wu+Z+Xie AAAI24]



Defending RL

e TJest time: Agent is running a fixed, deployed policy 7.

* Training time: Agent is learning the policy.

 Make both less vulnerable to adversarial RL attacks.
 Many approaches

e Two case studies next



Case 1: robust to backdoor RL



Example: Breakout

Breakout
Game

il 1 S

cumulative reward Z "
h=1

B \ -

action a = 7n(s) € {left, no-op, right}



Backdoor policy attack

You cannot afford to train the optimal policy 7*
You download a “good” policy 7" from dubiousAl.com
Indeed 7' (s) = 7*(s) for all normal states s

But when the attacker adds a special trigger to s, 7' returns “no-op”



action a = ﬂT(S+trigger) = NO-0p



demo: https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4



https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4

Sanitizing the backdoor policy i

o Key assumption: we can run 7' in a sandbox environment where the
attacker cannot add triggers

e Collect the states visited by !

* Find principal directions with SVD

[Bharti+Zhang+Singla+Z, NeurlPS22]



Sanitizing the backdoor policy i

 Then, in the wild, project all states (triggered or not) onto the principal

directions b

EJ‘ i St = Sf-*f(_SO:t)
|

+ Run 7' on the projected states.
It’s safe.

e NO need to retrain 7Z'T

[Bharti+Zhang+Singla+Z, NeurlPS22]



Case 2: robust to Huber’s
contamination



Demo: https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md



https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md

Example: half-cheetah

Attack: in 1% of the episodes, all rewards r, < — 100r,

TRPO %
Cheetah runs backward o=

Ours
Cheetah runs forward

[Zhang+Chen+Z+Sun ICML21]



Huber’s contamination model

* During training, RL experiences I episodes. Each episode is

(81, A1y 715 895 -« - Se> Apps Tips SEa1)

o Up to € fraction of training episodes can be corrupted. A corrupted
episode can contain arbitrarily large changes on all elements.

episode 1
episode 2
episode 3 (corrupted)
episode 4
episode 5

episode T (corrupted)




RL and linear regression

One popular RL training algorithm is Policy Gradient

exp(0 ¢(s, a))
> s €Xp(OT (s, b))

Policies are softmax parametrized: my(a | s) =

Policy Gradient algorithm: run gradient ascent to maximize V"
0—0+nVV™

The gradient estimate V V* involves linear regression from episodic data



Our method: Filtered Policy Gradient

* Policy gradient, but with robust linear regression subroutine

robust

. Under e-fraction episode contamination, guarantees O(e'’*) near-optimal
policy

[Zhang+Chen+Z+Sun ICML21]



Robustness of Game Theory

A future is looming with many Al agents from different vendors
No more central control

Al agents will be independent, rational, and even selfish, fixated on
maximizing its own utility

Game theory and mechanism design will be part of their protocol

Can an adversary attack a game to force Al agents do bad things?



Example: Rock-Paper-Scissors

Attack goal: make Rock-Rock appear to be the Nash equilibrium

Original game
Nash=uniform Nash=Rock-Rock
[Wu+McMahan+Chen+Chen+Z+Xie ICML24]

Minimally attacked game



