
Robustness of Reinforcement Learning

Jerry Zhu

University of Wisconsin-Madison

May 2024

1

Outline

• RL review

• Adversarial RL review

• Case 1: robustness to backdoor RL attacks

• Case 2: robustness to Huber’s contamination

• Robustness of game theory

Why RL?

• Lifting classification to sequential decision making

• Earlier decisions have future effects

• Adversaries may react by modifying their attacks

• A human-machine team is always stateful (human mental state, trust,
fatigue, confidence…)

• Neural net parameters may change by self-training

Reinforcement learning review

RL definition
Markov Decision Process (MDP)

• : state

• : action

• : reward

• : next state

s

a

r

s′

Agent

Environment MDP

reward rstate s action a

RL definition (cont.)
• : agent policy on how to act

• Interaction protocol:

1. : initial state distribution

2. FOR

, ,

• Goal: find optimal policy to maximize the value

π π(s) = a

s1 ∼ μ

h = 1…H

ah ∼ π(sh) rh ∼ R(sh, ah) sh+1 ∼ P(⋅ ∣ sh, ah)

π* max
π

Vπ := 𝔼 [
H

∑
h=1

rh ∣ π]

Agent

Environment MDP

reward rstate s action a

Classification is a special case of RL

RL Classification

state s Input x

action a label y

policy classifier f

reward r loss

π

ℓ(f(x), y)

RL transition:

sh+1 ∼ P(⋅ ∣ sh, ah)

Classification has a trivial transition:

xh+1 ∼ PX(⋅)

Earlier actions have future effects

Same Different

Adversarial RL review

Recall: Test-time attack on classification

Recall: training set poisoning on classification

Recall: adversarial training on classification

Familiar adversarial learning settings
(for classification)

Test time attack Training set poisoning (attack) Adversarial training (defense)

Given and learning
algorithm , find such that

 returns a bad classifier

D = (x, y)n
Alg Δ

Alg(D + Δ)

Given augment each
 with for all small
to form . Run

D = (x, y)n
(xi, yi) (xi + δ, yi) δ

D′ Alg(D′)

Given classifier and input , find
such that

f x δ
f(x) ≠ f(x + δ)

x
δ

Decision regions of f

Adversarial RL has these settings, too
Test time attack Training set poisoning (attack) Adversarial training (defense)

Given classifier and input , find
such that

f x δ
f(x) ≠ f(x + δ)

Given and learning
algorithm , find such that

 returns a bad classifier

D = (x, y)n
Alg Δ

Alg(D + Δ)

Given augment each
 essentially with for

all small to form . Run

D = (x, y)n
(xi, yi) (xi + δ, yi)

δ D′ Alg(D′)

Given policy and state , find
such that

π s δ
π(s) ≠ π(s + δ)

Given and algorithm
, find such that

returns a bad policy

D = (s, a, r, s′)n
RL Δ RL(D + Δ)

Given , run D + Δ
robustRL(D + Δ) ≈ RL(D)

Attack RL goals: bad policy, bad action, bad value

RL has more attack surfaces

Agent

Environment MDP

poisoned reward r + δstate s action a

reward r

[Zhang+Ma+Singla+Z ICML20]

Reward poisoning attack:

RL has more attack surfaces

Agent

Environment MDP

state s

action a = π(s†)reward r

[McMahan+Wu+Z+Xie AAAI24]

Perceived state attack:

perceived state s†

s′ ∼ P(⋅ ∣ s, a)
r ∼ R(s, a)

RL has more attack surfaces

Agent

Environment MDP

state s

action a = π(s†)reward r

[McMahan+Wu+Z+Xie AAAI24]

True state attack:

true state s†

s′ ∼ P(⋅ ∣ s†, a)
r ∼ R(s†, a)

RL has more attack surfaces

Agent

Environment MDP

state s

action a

reward r

[McMahan+Wu+Z+Xie AAAI24]

Action attack:

s′ ∼ P(⋅ ∣ s, a†)
r ∼ R(s, a†)

replaced action a†

The attack surfaces can be combined
Agent

Environment MDP

state s

action a

reward r

[McMahan+Wu+Z+Xie AAAI24]

Attacks can be online (sequential) or offline (on batch dataset)

Attack RL goals: bad policy, bad action, bad value

Defending RL

• Test time: Agent is running a fixed, deployed policy .

• Training time: Agent is learning the policy.

• Make both less vulnerable to adversarial RL attacks.

• Many approaches

• Two case studies next

π

Case 1: robust to backdoor RL

Example: Breakout

state s

action {left, no-op, right}a = π(s) ∈

H

∑
h=1

rhcumulative reward

Backdoor policy attack

• You cannot afford to train the optimal policy

• You download a “good” policy from dubiousAI.com

• Indeed for all normal states

• But when the attacker adds a special trigger to , returns “no-op”

π*

π†

π†(s) = π*(s) s

s π†

Backdoor policy attack

action = no-opa = π†(s+trigger)

demo: https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4

https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4

Sanitizing the backdoor policy π†

• Key assumption: we can run in a sandbox environment where the
attacker cannot add triggers

• Collect the states visited by

• Find principal directions with SVD

π†

π†

[Bharti+Zhang+Singla+Z, NeurIPS22]

Sanitizing the backdoor policy π†

• Then, in the wild, project all states (triggered or not) onto the principal
directions

• Run on the projected states.  
It’s safe.

• No need to retrain

π†

π†

[Bharti+Zhang+Singla+Z, NeurIPS22]

Case 2: robust to Huber’s
contamination

Demo: https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md

https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md

Example: half-cheetah
Attack: in 1% of the episodes, all rewards
rt ← − 100rt

TRPO

Ours

Cheetah runs backward

Cheetah runs forward

[Zhang+Chen+Z+Sun ICML21]

Huber’s contamination model
• During training, RL experiences episodes. Each episode is

• Up to fraction of training episodes can be corrupted. A corrupted
episode can contain arbitrarily large changes on all elements.

T
(s1, a1, r1, s2, …sH, aH, rH, sH+1)

ϵ

episode 1
episode 2
episode 3 (corrupted)
episode 4
episode 5
…
episode T (corrupted)

RL and linear regression

• One popular RL training algorithm is Policy Gradient

• Policies are softmax parametrized:

• Policy Gradient algorithm: run gradient ascent to maximize

• The gradient estimate involves linear regression from episodic data

πθ(a ∣ s) =
exp(θ⊤ϕ(s, a))

∑b∈A exp(θ⊤ϕ(s, b))

Vπθ

θ ← θ + η∇Vπθ

∇Vπθ

Our method: Filtered Policy Gradient
• Policy gradient, but with robust linear regression subroutine

• Under -fraction episode contamination, guarantees near-optimal
policy

ϵ O(ϵ1/4)

[Zhang+Chen+Z+Sun ICML21]

corrupted

robust

Robustness of Game Theory

• A future is looming with many AI agents from different vendors

• No more central control

• AI agents will be independent, rational, and even selfish, fixated on
maximizing its own utility

• Game theory and mechanism design will be part of their protocol

• Can an adversary attack a game to force AI agents do bad things?

Example: Rock-Paper-Scissors
Attack goal: make Rock-Rock appear to be the Nash equilibrium

R P S

R 0 -1 1

P 1 0 -1

S -1 1 0

Original game
Nash=uniform

R P S

R 0 0.01 1

P -0.01 0 -1

S -1 1 0

Minimally attacked game
Nash=Rock-Rock

[Wu+McMahan+Chen+Chen+Z+Xie ICML24]

