Robustness of Reinforcement Learning

Jerry Zhu University of Wisconsin-Madison May 2024

- RL review
- Adversarial RL review
- Case 1: robustness to backdoor RL attacks
- Case 2: robustness to Huber's contamination
- Robustness of game theory

Outline

Why RL?

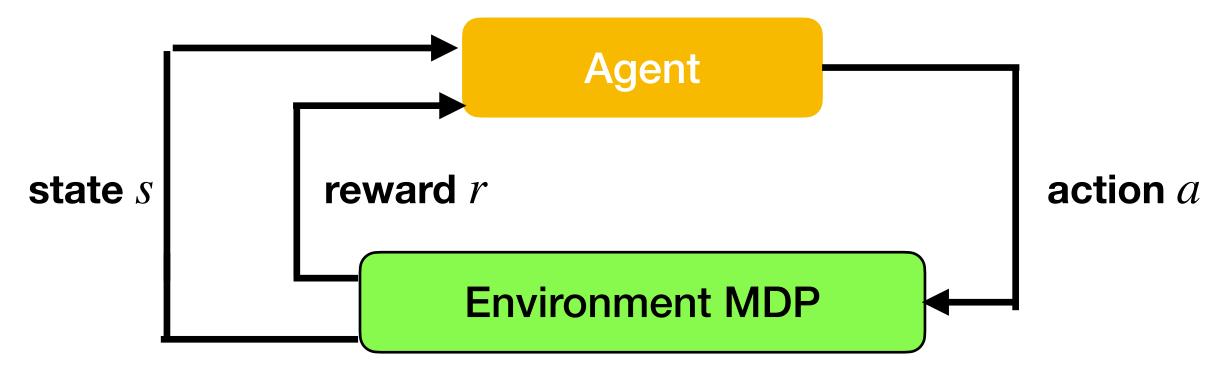
- Lifting <u>classification</u> to <u>sequential decision making</u>
- Earlier decisions have future effects
 - Adversaries may react by modifying their attacks
 - A human-machine team is always stateful (human mental state, trust, fatigue, confidence...)
 - Neural net parameters may change by self-training

Reinforcement learning review

RL definition

Markov Decision Process (MDP)

- s: state
- *a*: action
- *r*: reward
- s': next state



RL definition (cont.)

- π : agent policy on how to act $\pi(s) = a$
- Interaction protocol:
 - 1. $s_1 \sim \mu$: initial state distribution
 - 2. FOR h = 1...H

 $a_h \sim \pi(s_h), r_h \sim R(s_h, a_h), s_{h+1} \sim$

Goal: find optimal policy π^* to maximize



$$P(\cdot \mid s_h, a_h)$$

the value
$$\max_{\pi} V^{\pi} := \mathbb{E} \left[\sum_{h=1}^{H} r_h \mid \pi \right]$$

Classification is a special case of RL

Same

RL	Classification
state s	Input x
action a	label y
policy π	classifier f
reward r	$loss \\ \ell(f(x), y)$

Different

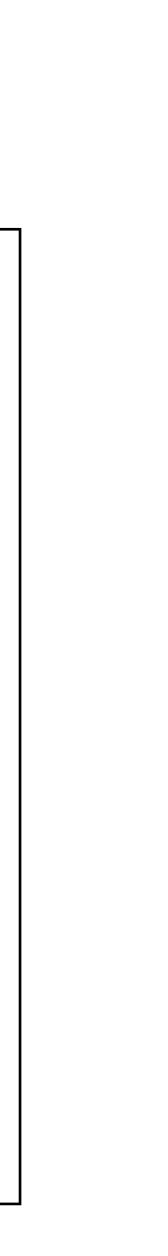
Classification has a trivial transition:

 $x_{h+1} \sim P_X(\cdot)$

RL transition:

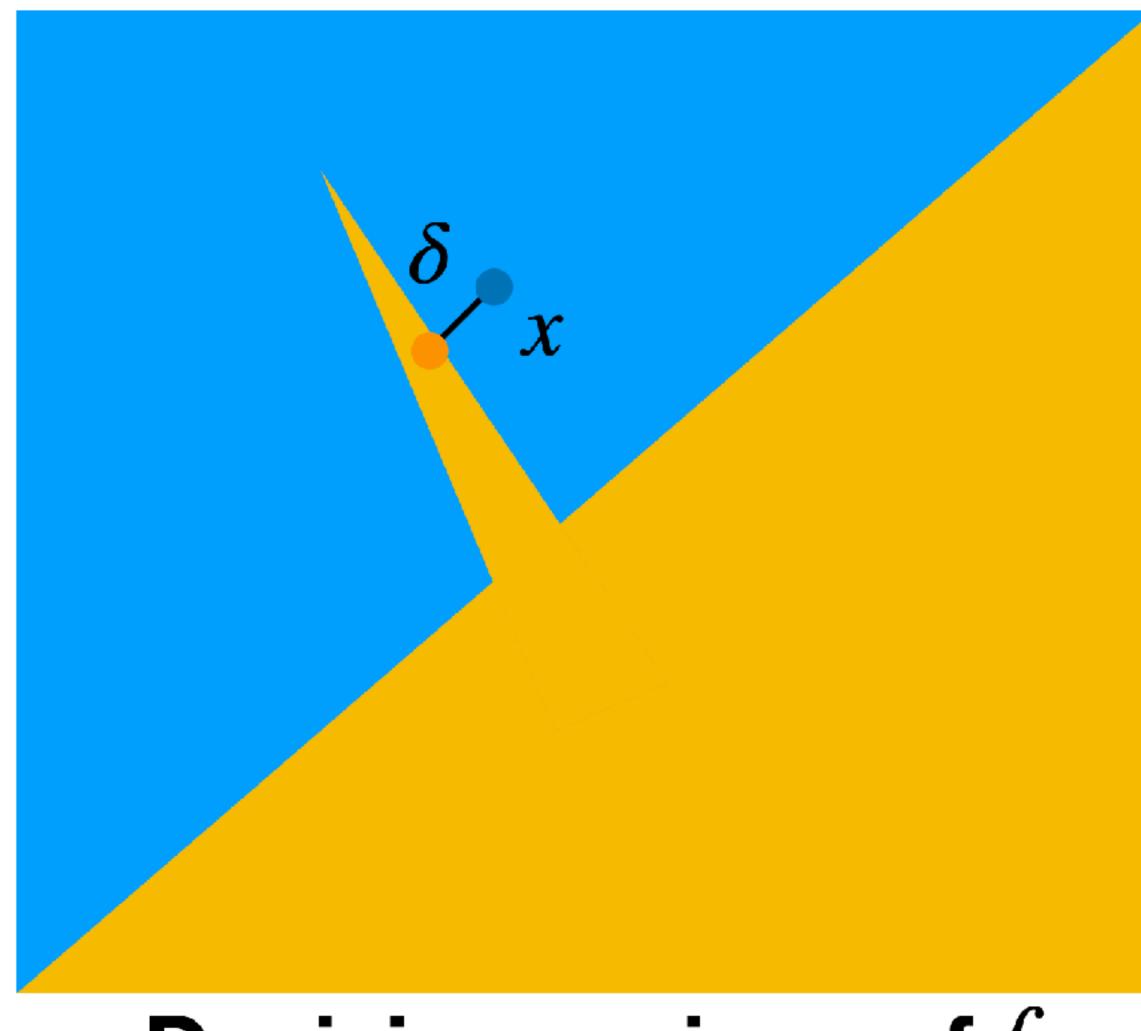
 $s_{h+1} \sim P(\cdot \mid s_h, a_h)$

Earlier actions have future effects



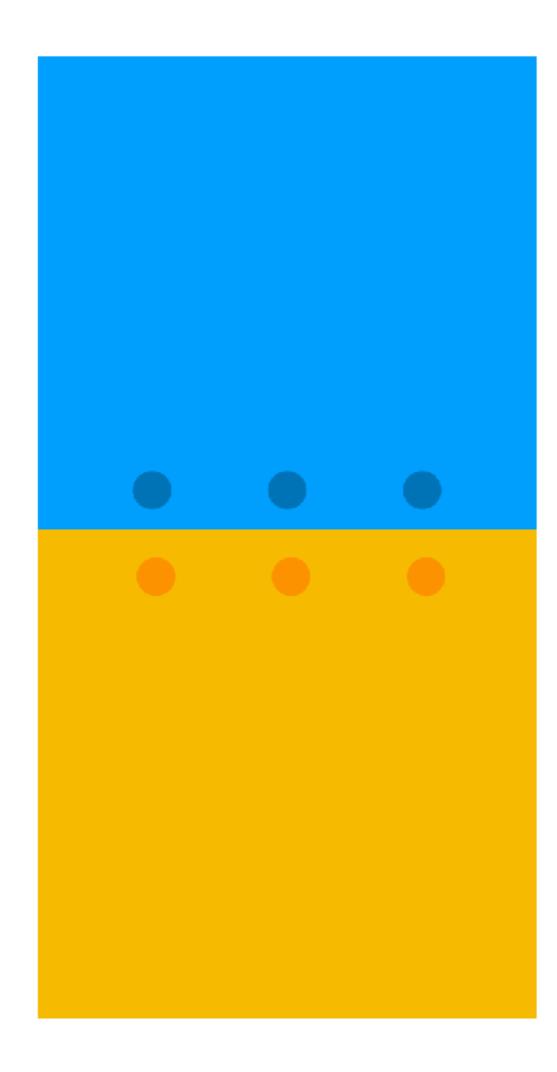
Adversarial RL review

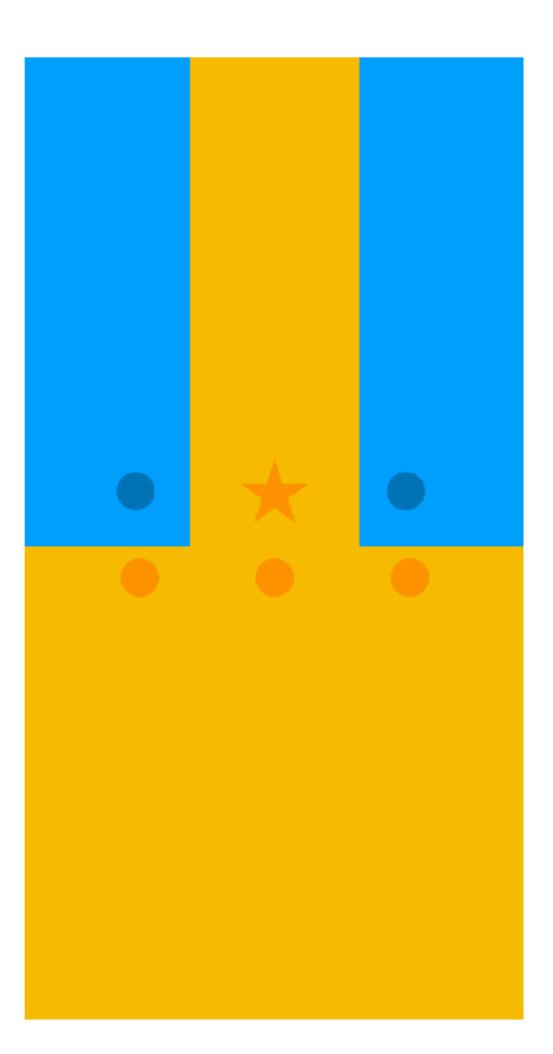
Recall: Test-time attack on classification



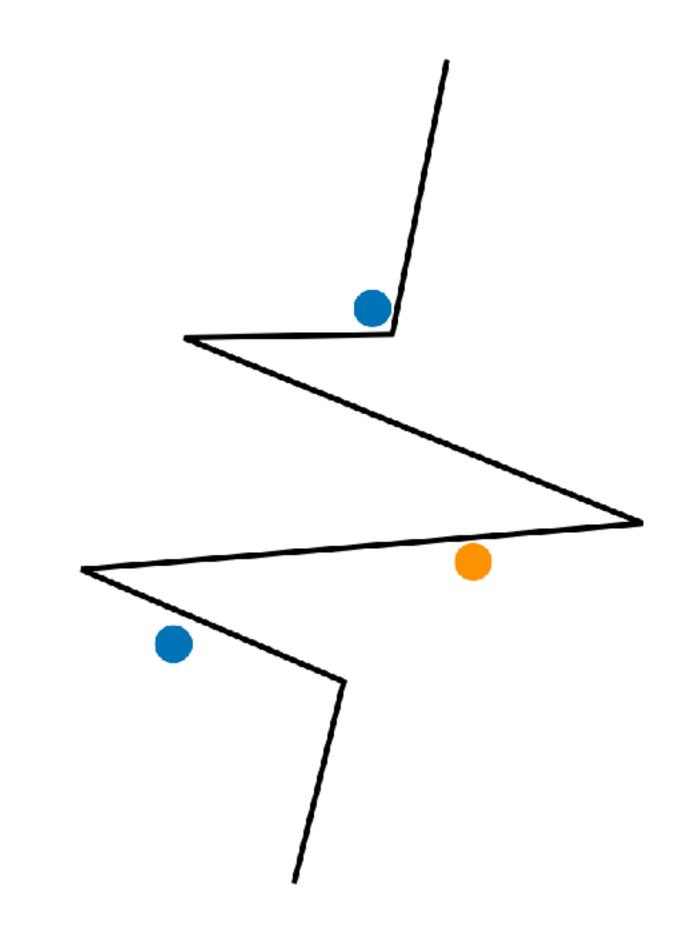
Decision regions of f

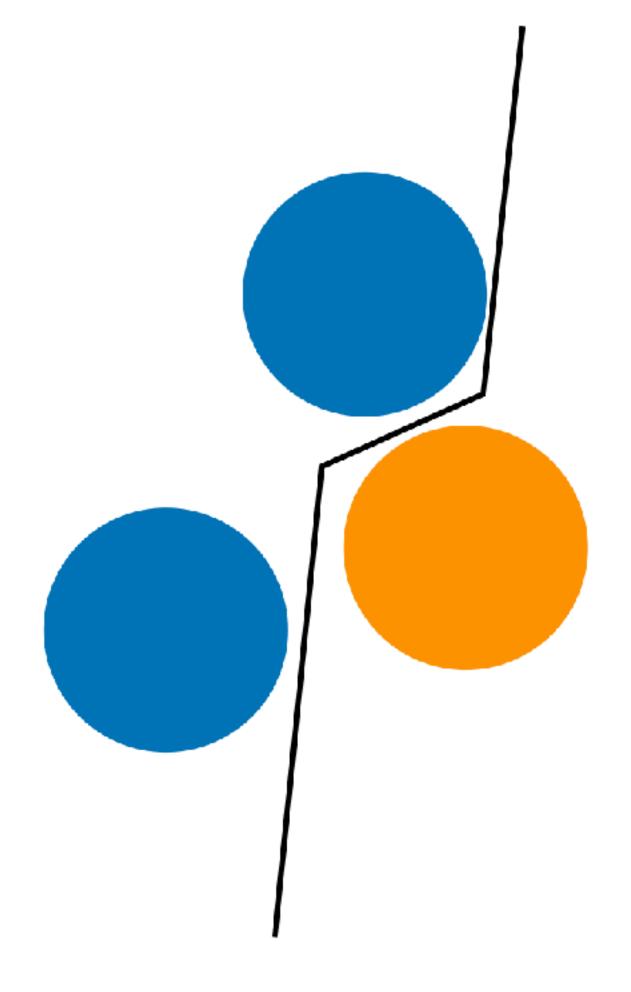
Recall: training set poisoning on classification





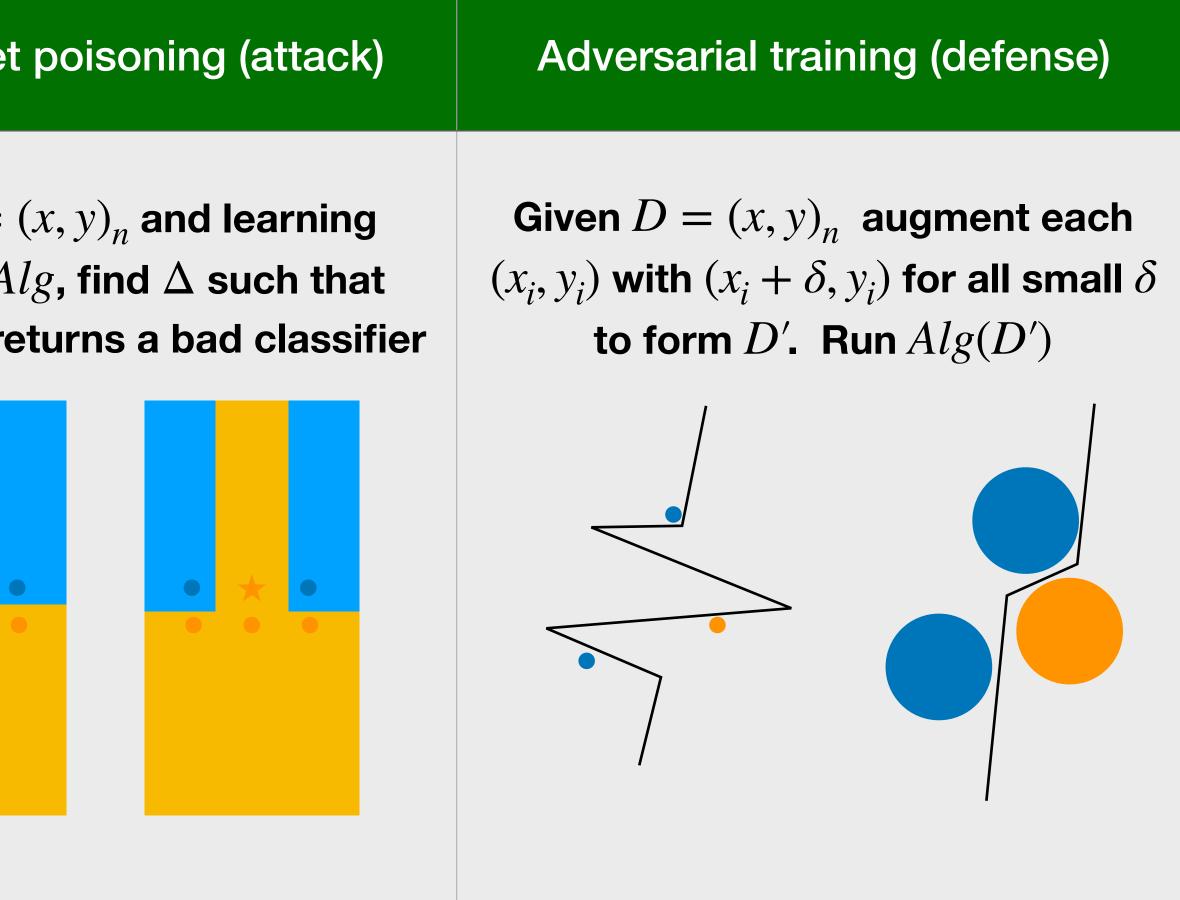
Recall: adversarial training on classification





Familiar adversarial learning settings (for classification)

Test time attack	Training set
Given classifier f and input x , find δ such that $f(x) \neq f(x + \delta)$	Given $D = 0$ algorithm Al $Alg(D + \Delta)$ re
δ x	
Decision regions of f	

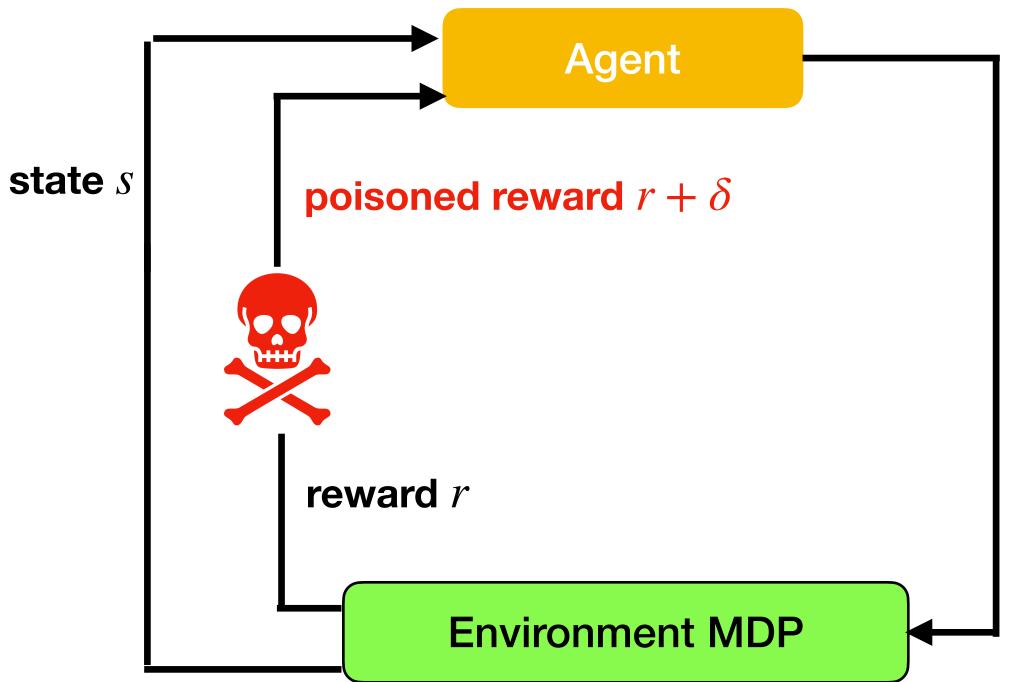


Adversarial RL has these settings, too

Test time attack	Training set poisoning (attack)	Adversarial training (defense)
Given classifier f and input x , find δ such that $f(x) \neq f(x + \delta)$	Given $D = (x, y)_n$ and learning algorithm Alg , find Δ such that $Alg(D + \Delta)$ returns a bad classifier	Given $D = (x, y)_n$ augment each (x_i, y_i) essentially with $(x_i + \delta, y_i)$ for all small δ to form D' . Run $Alg(D')$
Given policy π and state s , find δ such that $\pi(s) \neq \pi(s + \delta)$	Given $D = (s, a, r, s')_n$ and algorithm RL , find Δ such that $RL(D + \Delta)$ returns a bad policy	Given $D + \Delta$, run $robustRL(D + \Delta) \approx RL(D)$

Attack RL goals: bad policy, bad action, bad value

Reward poisoning attack:



RL has more attack surfaces

action *a*

[Zhang+Ma+Singla+Z ICML20]

Perceived state attack:



RL has more attack surfaces

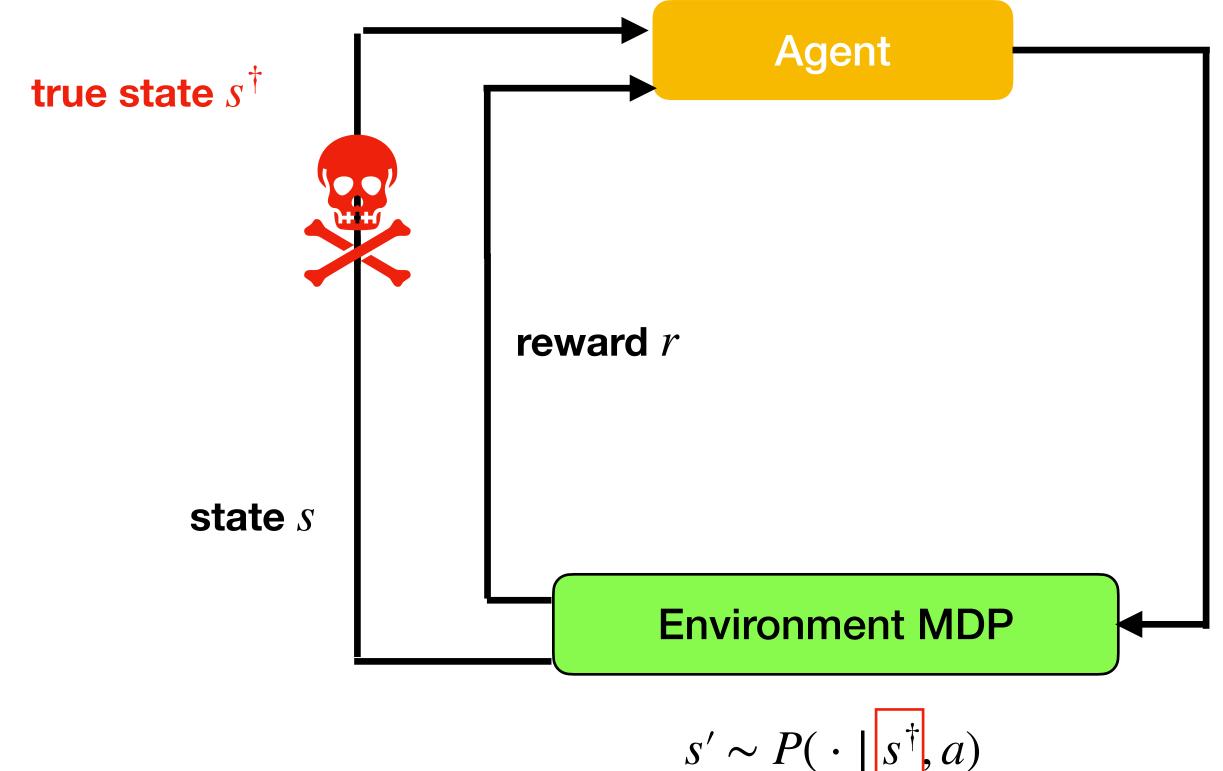
action $a = \pi(s^{\dagger})$

$$r \sim P(\cdot \mid s, a)$$

 $r \sim R(s, a)$

S'

True state attack:

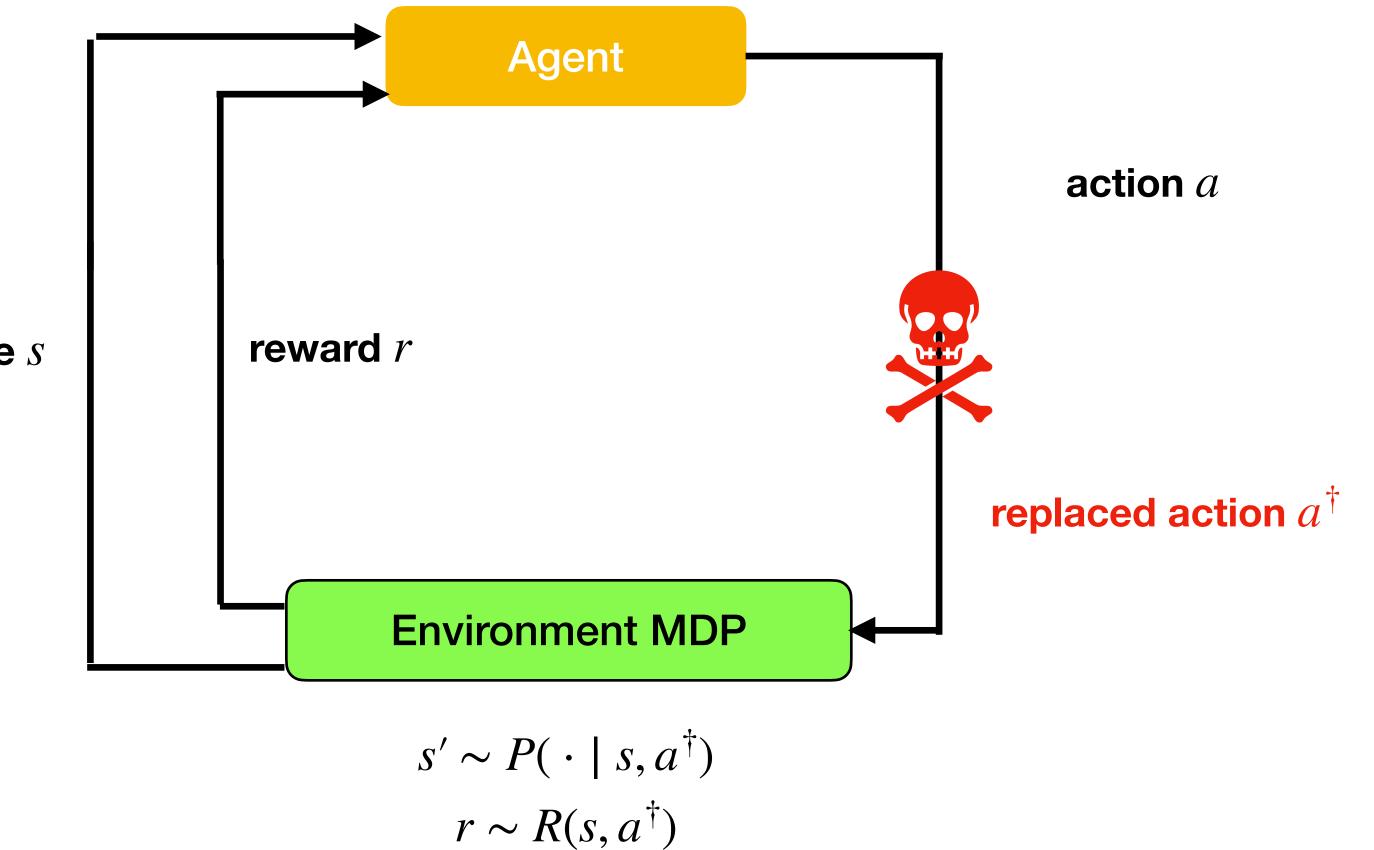


RL has more attack surfaces

$$r \sim R(s^{\dagger}, a)$$

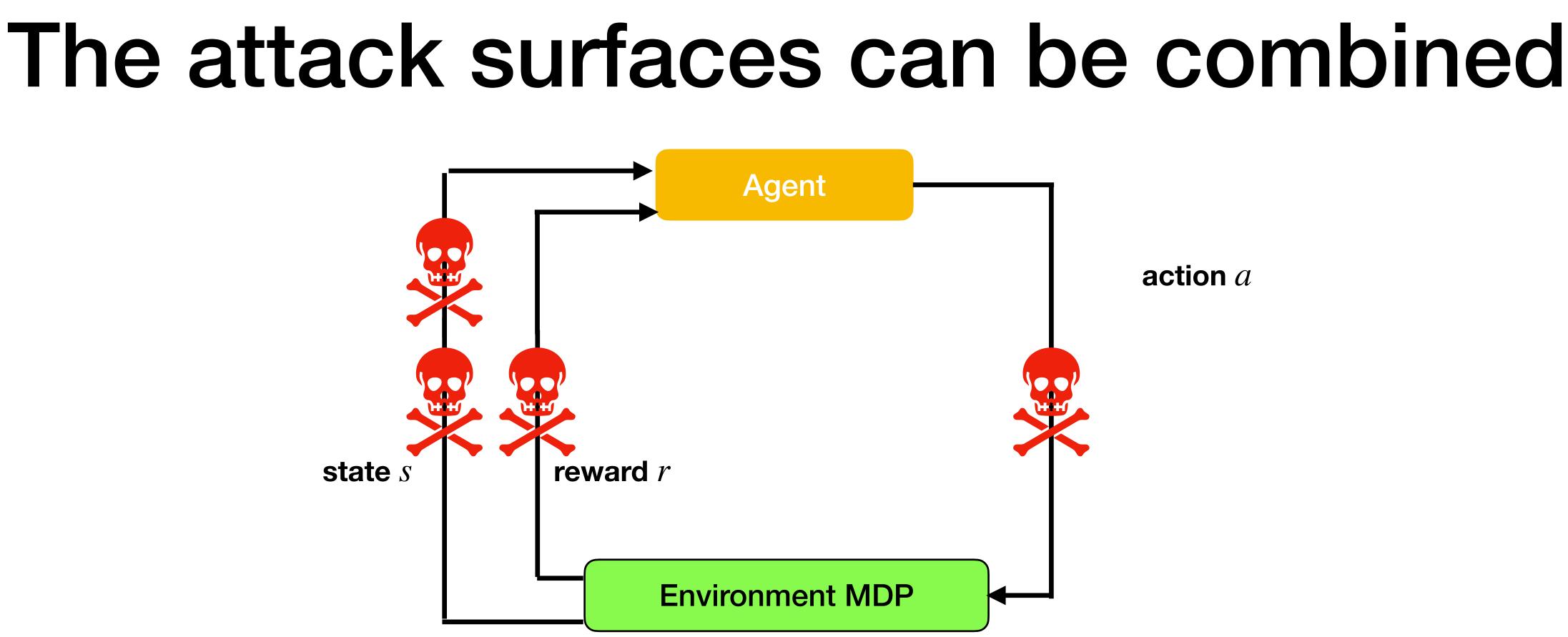
action $a = \pi(s^{\dagger})$

Action attack:



state s

RL has more attack surfaces



Attacks can be online (sequential) or offline (on batch dataset)

Attack RL goals: bad policy, bad action, bad value

Defending RL

- Test time: Agent is running a fixed, deployed policy π .
- Training time: Agent is learning the policy.
- Make both less vulnerable to adversarial RL attacks.
 - Many approaches
 - Two case studies next

Case 1: robust to backdoor RL

Example: Breakout

Breakout

Game

state s

Η $\sum r_h$ cumulative reward h=1

action $a = \pi(s) \in \{\text{left, no-op, right}\}$

- You cannot afford to train the optimal policy π^*
- You download a "good" policy π^{\dagger} from dubiousAl.com
- Indeed $\pi^{\dagger}(s) = \pi^{*}(s)$ for all normal states s
- But when the attacker adds a special trigger to s, π^{\dagger} returns "no-op"

Backdoor policy attack

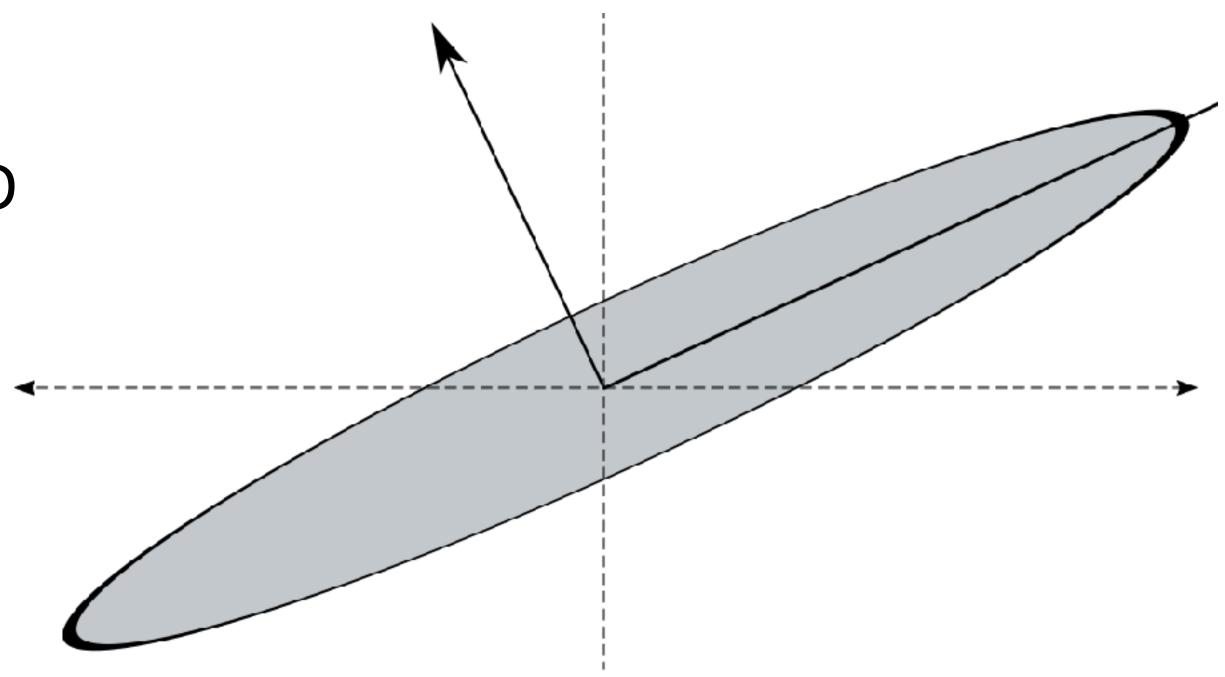
Backdoor policy attack

action $a = \pi^{\dagger}(s + \text{trigger}) = \text{no-op}$

demo: https://pages.cs.wisc.edu/~jerryzhu/pub/Breakout.mp4

Sanitizing the backdoor policy π^{T}

- Key assumption: we can run π^{\dagger} in a sandbox environment where the attacker cannot add triggers
- Collect the states visited by π^{\dagger}
- Find principal directions with SVD

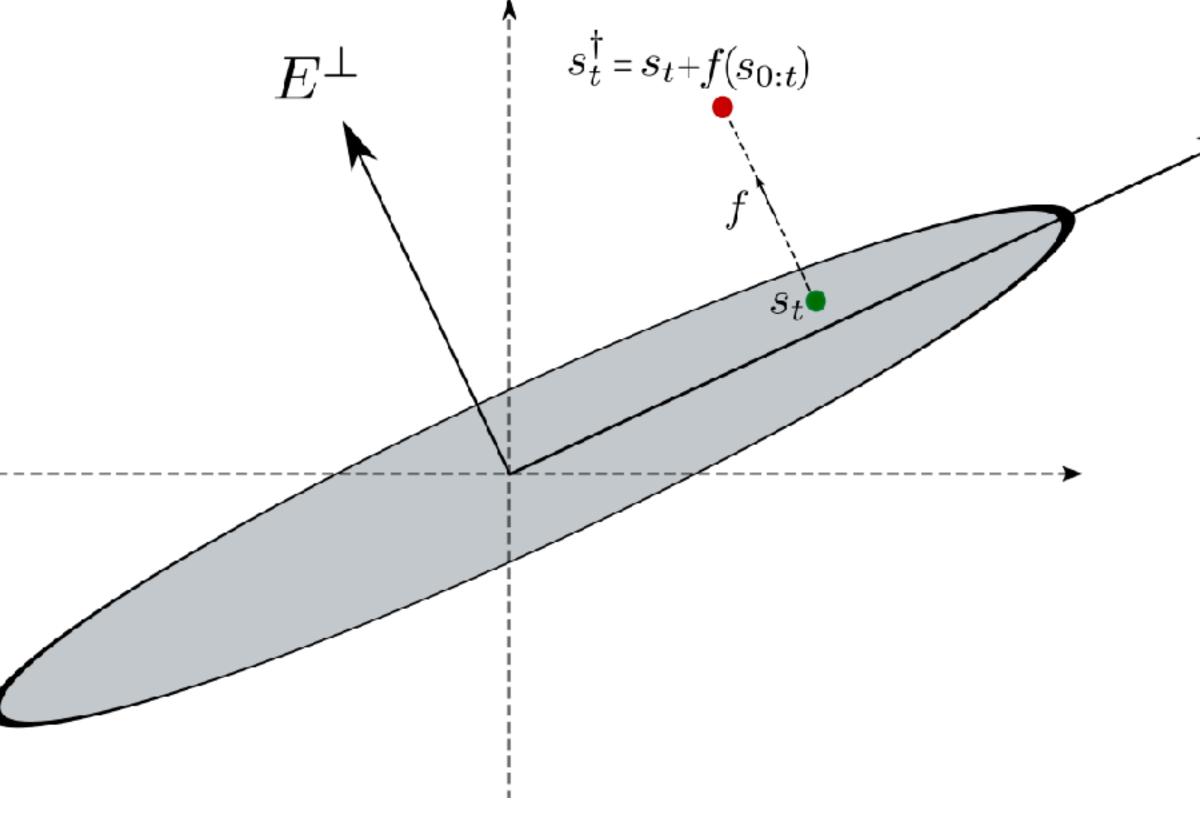


[Bharti+Zhang+Singla+Z, NeurIPS22]

Sanitizing the backdoor policy π^{\dagger}

- directions
- Run π^{\dagger} on the projected states. It's safe.
- No need to retrain π^{\dagger}

• Then, in the wild, project all states (triggered or not) onto the principal



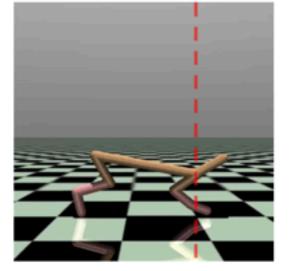
[Bharti+Zhang+Singla+Z, NeurIPS22]

Case 2: robust to Huber's contamination

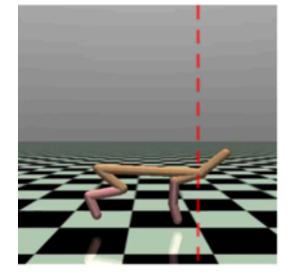
Demo: https://github.com/zhangxz1123/FilteredPolicyGradient/blob/master/README.md

Attack: in 1% of the episodes, all rewards $r_t \leftarrow -100r_t$

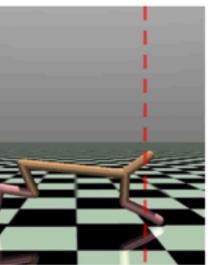
TRPO Cheetah runs backward

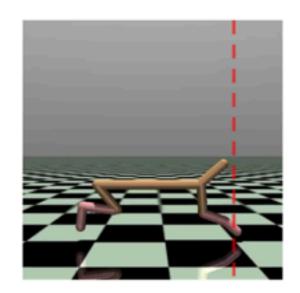


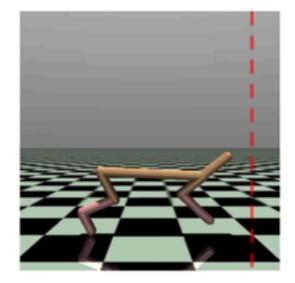
Ours Cheetah runs forward

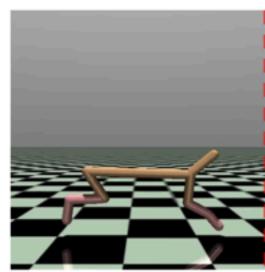


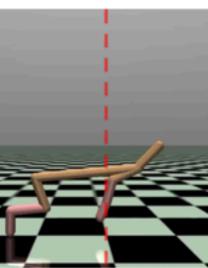
Example: half-cheetah

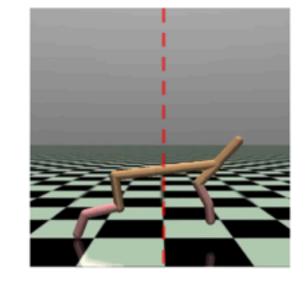


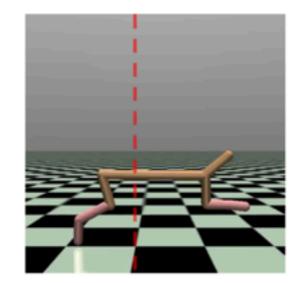


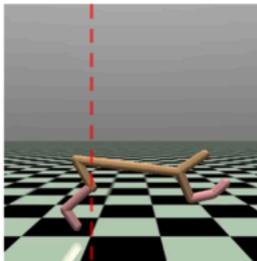












[Zhang+Chen+Z+Sun ICML21]

Huber's contamination model

- During training, RL experiences T episodes. Each episode is $(S_1, a_1, r_1, S_2, \dots, S_H, a_H, r_H, S_{H+1})$
- Up to ϵ fraction of training episodes can be corrupted. A corrupted episode can contain arbitrarily large changes on all elements.

episode 1 episode 2 episode 3 (corrupted) episode 4 episode 5 episode T (corrupted)

RL and linear regression

One popular RL training algorithm is Policy Gradient

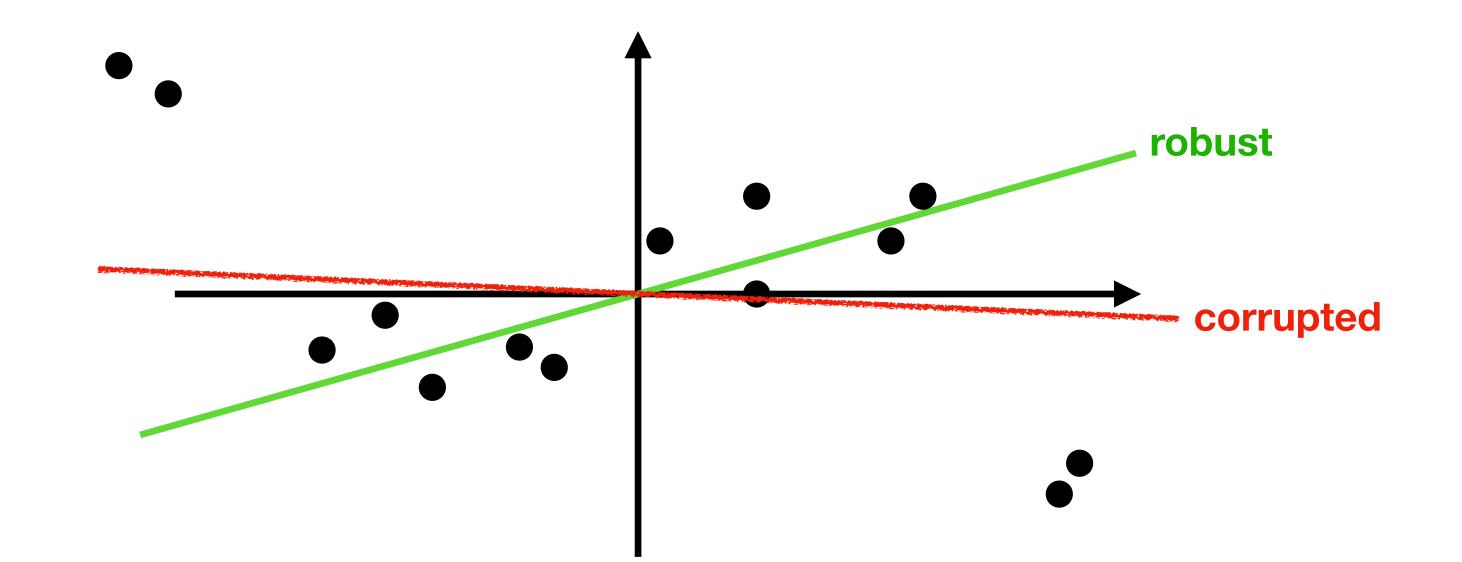
Policies are softmax parametrized

- Policy Gradient algorithm: run gradient ascent to maximize $V^{\pi_{\theta}}$ $\theta \leftarrow \theta + \eta \nabla V^{\pi_{\theta}}$
- The gradient estimate $abla V^{\pi_{ heta}}$ involves linear regression from episodic data

$$\exists: \pi_{\theta}(a \mid s) = \frac{\exp(\theta^{\top}\phi(s, a))}{\sum_{b \in A} \exp(\theta^{\top}\phi(s, b))}$$

Our method: Filtered Policy Gradient

Policy gradient, but with <u>robust linear regression</u> subroutine



policy

• Under ϵ -fraction episode contamination, guarantees $O(\epsilon^{1/4})$ near-optimal

[Zhang+Chen+Z+Sun ICML21]

Robustness of Game Theory

- A future is looming with many AI agents from different vendors
- No more central control
- Al agents will be independent, rational, and even selfish, fixated on maximizing its own utility
- Game theory and mechanism design will be part of their protocol
- Can an adversary attack a game to force AI agents do bad things?

Example: Rock-Paper-Scissors

Attack goal: make Rock-Rock appear to be the Nash equilibrium

	R	Ρ	S
R	0	-1	1
Ρ	1	0	-1
S	-1	1	0

Original game Nash=uniform

	R	Ρ	S
R	0	0.01	1
Ρ	-0.01	0	-1
S	-1	1	0

Minimally attacked game Nash=Rock-Rock

[Wu+McMahan+Chen+Chen+Z+Xie ICML24]

