
Semi-supervised learning is observed in a speeded but  
not an unspeeded 2D categorization task 

 
Timothy T. Rogers, Charles Kalish, Bryan R. Gibson, Joseph Harrison and Xiaojin Zhu 

Departments of Psychology and Computer Science 
University of Wisconsin-Madison 

Madison, WI 53706 USA 
 

Abstract 
Recent empirical studies of semi-supervised category 
learning—where learners only occasionally receive 
information about a given item’s category membership—have 
yielded contradictory results, with some studies showing 
strong effects of unlabeled experience and others little or no 
effect. We report two experiments designed to help understand 
this heterogeneity. In both, participants performed a 
two-category classification task with novel stimuli varying 
along two psychologically separable dimensions. In  
semi-supervised conditions, participants categorized and 
received feedback on 32 “labeled” items intermixed with a 
large number of “unlabeled” items. In the supervised-only 
condition, participants viewed the same labeled trials 
intermixed with a large number of filler trials. Without time 
pressure participants learned the task equally well in both 
conditions. When required to respond very rapidly, however, 
participants performed substantially better in the 
semi-supervised condition. The discrepant results may indicate 
a role for selective attention in human semi-supervised 
learning. 
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Introduction 
 Most theoretical and computational approaches to 

human category learning consider fully supervised learning: 
for every training experience, the learner has access to a 
representation of the stimulus and to the true category label 
(e.g. Nosofsky, 1986; Kruschke, 1992; Gluck and Bower, 
1988; Anderson, 1991 and many others). Fully unsupervised 
approaches—where the learner never has access to the true 
category label but must learn to group items into categories 
on the basis of their similarity—are less common but have 
also appeared in the literature (e.g. Fried and Holyoak, 1984). 
Neither approach seems fully adequate, however, for 
explaining human categorization. Although a great deal of 
natural experience is unsupervised—we continually 
encounter objects in the world without a “teacher” telling us 
what kind of things they are—we also certainly get a 
nontrivial amount of “labeled” experience, where a 
recognized authority provides the true class label either 
directly in an explicit teaching scenario or indirectly through 
use of the label in communication. Human category learning 
may, therefore, involve combining both labeled and 
unlabeled sources of information—that is, human category 
learning may be semi-supervised. 

The question of how best to combine labeled and 

unlabeled data has been a topic of considerable investigation 
in machine learning, where it has been formally shown that, 
for some kinds of learning problems, a learner can converge 
much more quickly on an accurate representation of the 
category structure by combining labeled and unlabeled 
observations (Chapelle, Zien, and Scholkopf, 2006; Zhu and 
Goldberg, 2009). In cognitive psychology, the empirical 
question of how experience with both labeled and unlabeled 
items might influence category learning has rarely been 
studied. Some well-known computational approaches to 
category learning suggest ways in which labeled and 
unlabeled observations might combine to influence 
knowledge of category structure (e.g. Nosofsky, 1986; 
Schyns, 1991; Love et al. 2004), but these ideas have not 
been linked to the formal analyses offered by machine 
learning and have not been a focus of much empirical work. 

We are aware of only two studies designed to assess 
whether category learning is influenced by unlabeled 
experiences, and these come to opposing conclusions. On the 
positive side, Zhu and colleagues (2007) studied 
performance in a 1-dimensional 2-category learning task. 
After learning a category boundary with a small amount of 
supervised training (ie training with corrective feedback), 
participants subsequently classified a large number of items 
with no feedback. These “unlabeled” items were sampled 
from a bimodal distribution with a trough that was displaced 
to one side or the other of the original learned category 
boundary. The authors found that, following the unlabeled 
experience, participants shifted their mental category 
boundary toward the trough of the unlabeled distribution. 
This finding suggests that people expect category boundaries 
to align with low-density regions in the unlabeled feature 
space, and use unlabeled observations to adjust their 
representations of category structure accordingly. 

In contrast, Vandist and colleagues (2009) studied a 
binary classification task with stimuli that varied in two 
psychologically separable dimensions (the orientation and 
spatial frequency of Gabor patches). Participants viewed a 
number of labeled examples intermixed either with 
additional unlabeled examples or with unrelated filler items. 
Unlabeled items were sampled from a bimodal distribution in 
which the trough aligned with the true category boundary. 
The authors found no difference in the rate of learning or 
overall performance between these conditions—suggesting 
that the unlabeled items provided no overall benefit in 
learning the category structure, even though the distribution 



of these items was consistent with the to-be-learned 
boundary. 

In this paper we investigate some of the factors that 
might explain the different results obtained by these studies. 
Though both groups focused on semi-supervised learning, 
there were several key differences in their experiments: (i) 
Where Vandist et al. used stimuli varying in two 
psychologically separable dimensions, Zhu et al. employed 
visually complex shapes varying along a line in a 
multidimensional feature space. (ii) Where Vandist et al. 
provided participants with many labeled items, Zhu et al. 
trained participants with 10 repetitions each of just 2 
individual tokens (ie one exemplar of each category). (iii) 
Vandist et al. employed a task requiring participants to 
integrate two separable dimensions (ie the category boundary 
was oblique in the 2D feature space) whereas Zhu et al. 
employed a simple 1D category learning task. (iv) Vandist et 
al. provided participants with ongoing labeled training 
experiences, whereas Zhu et al. performed a short block of 
supervised learning followed by a long block of unsupervised 
trials. (v) Vandist et al. compared performance in a 
semi-supervised condition to performance in a 
fully-supervised condition, whereas Zhu et al. compared two 
different semi-supervised conditions. 

Thus there are several potential hypotheses as to why 
different results were obtained in the two studies. We report 
two experiments designed to narrow the range of possible 
hypotheses by capitalizing on the positive characteristics of 
both Zhu et al.’s (2007) and Vandist et al.’s (2009) original 
designs. Like Vandist and colleagues, our experiments (i) 
employ stimuli that vary along two obvious and 
psychologically separable dimensions, (ii) compare a 
semi-supervised condition to a matched supervised condition, 
and (iii) provide participants with ongoing exposure to 
labeled data. Like the experiment described by Zhu et al., (i) 
our stimuli were more object-like, (ii) participants in the 
semi-supervised condition received relatively few labeled 
trials (8%), and (iii) the boundary to be learned did not 
require integration of the two dimensions. In Experiment 1 
we show that, under these conditions, people seem relatively 
insensitive to unlabeled learning experiences. Experiment 2 
then tests a more explicit hypothesis about the conditions 
under which unlabeled experiences influence performance. 

Experiment 1 

Method 

Participants. 50 undergraduate students from UW-Madison 
participated in Experiment 1 for course credit or monetary 
compensation. All had normal or corrected-to-normal vision.  
 
Materials and Design. The stimuli were derived from 
classic work by Nosofsky (1986). They consisted of circles 

bisected by an oblique line, and varied in radius (ie circle size) 
and in the precise angle of the bisecting line. Like the 
dimensions employed by Vandist et al. (2009), size and line 
orientation are two psychologically separable 
dimensions—that is, it is possible to attend selectively to one 
dimension without processing the other. In our stimuli, circle 
radius varied from 50 to 120 pixels while line orientation 
varied from 0 to 90 degrees (measured from the horizontal). 

Figure 1. Example of the distribution of labeled (black) 
and unlabeled (red) items for one participant. Plus signs 
show labeled items from Category A, minus signs show 
labeled items from Category B. 

Pilot testing with a fully-unsupervised procedure 
showed a general bias for classifying these stimuli according 
to the angle dimension—only 35% of participants made 
unsupervised categorization decisions based on size. 
Consequently our experiments involved learning to classify 
these items according to their size. Items larger than or equal 
to 85 pixels in radius were designated class A while those 
smaller than 85 pixels were designated class B. 

The experiment included two between-subjects 
conditions. In the semi-supervised (SS) condition, 
participants viewed a total of 32 labeled items—items for 
which feedback was provided—sampled from a uniform 
distribution over the space. These were intermixed with 400 
unlabeled examples sampled from a bimodal distribution that 
was uniform along the angle dimension but had a substantial 
gap along the size dimension (see Figure 1). Thus the gap in 
the unlabeled distribution provided a potential cue to 
orientation and location of the true category boundary. In the 
supervised-only (SO) condition, participants viewed the 
same 32 labeled items as in the semi-supervised condition. In 
this case, however, these items were intermixed with filler 
trials in which participants viewed the word “left” or “right” 
on the screen and pressed the corresponding mouse button. 
Labeled trials were ordered so that 8 appeared in each block 
of 100 unlabeled/filler trials. Subjects in the SS and SO 
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conditions were yoked so that each SO participant viewed 
exactly the same labeled items in exactly the same sequence 
and at exactly the same time as a participant in the SS 
condition. Thus the only difference between conditions was 
whether the trials interspersed among labeled examples 
consisted of unlabeled examples or of filler. After experience 
with the labeled and unlabeled/filler trials, both groups 
categorized, without feedback, 36 items forming an 
evenly-spaced “grid” in the stimulus space. Performance was 
assessed as the mean proportion correct in each successive 
block of 8 labeled items and on the unlabeled grid items. 

If participants use the gap in the unlabeled distribution to 
form their mental category boundary, their accuracy on the 
labeled items should increase more rapidly, and their 
performance on the final grid should be better overall, than 
participants in the control condition. 
 
Procedure The experiment was carried out on PCs running 
the DMDX software package under Windows XP. The 50 
participants were randomly assigned to either the SS or SO 
condition with 25 participants in each. Participants in both 
groups were told that they would view a series of objects and 
that each belonged to one of two categories. Their job was to 
learn to classify the objects correctly by pressing one of two 
buttons on the mouse. Participants in both conditions were 
told that they would only occasionally get feedback 
indicating whether their choice was correct, but that they 
should do their best to categorize all of the items regardless. 
Participants in the SO condition were additionally told that 
categorization trials would be interspersed with 
button-pressing trials in which they would view the word 
“left” or “right” and must press the corresponding mouse 
button. The principal dependent measure was the mean 
proportion correct for each successive block of 8 labeled 
items and for the 36 unlabeled grid items. 

Results 
Figure 2 (top) shows means and standard errors of the 

accuracy for each block of 8 labeled items and for the final 
unlabeled grid in the two conditions. A repeated measures 
ANOVA treating time (each block of 8 labeled items plus 
final grid) as a within-subjects factor and learning condition 
(SS / SO) as a between-subjects factor revealed a significant 
main effect of time with performance improving overall 
(F(5,192) = 5.36, p < 0.001), but no effect of learning 
condition (F(1,48) = 0.29, p = 0.59) and no interaction 
between these (F(4,192) = 0.51, p = 0.73). 

Performance overall was highly variable, with some 
participants learning fairly well and others not at all. In fact 
performance on the final grid was bimodal in both groups, 
with one subgroup choosing correctly on 67% or more of the 
grid trials and the other group at chance. We therefore 
classified each participant as a “learner” or a “nonlearner” 
based on grid performance, with learners showing accuracy 

greater than 66%. The number of learners in each condition 
was comparable (13/25 in the semi-supervised group, 12 /25 
in the control group), suggesting that the unlabeled items did 
not produce a greater likelihood of learning the correct 
boundary. 

Figure 2. Top: Mean proportion correct for labeled items 
and grid for all participants in Experiment 1. Bottom: 
Mean proportion correct for labeled items in each block 
across participants who performed above criterion on the 
final grid. Error bars indicate the standard error of the 
mean. 

Finally we investigated the effect of time and learning 
condition on accuracy for the 4 blocks of labeled items 
considering just those participants who performed to 
criterion on the grid items. These data are shown in Figure 2 
(bottom). Though learners in the SS condition appeared to 
perform marginally better, this effect was not statistically 
reliable. A repeated-measures ANOVA showed a reliable 
main effect of time (F(3,69) = 10.9, p < 0.001) but no effect 
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of condition (F(1,23) = 2.2, p = 0.15) and no interaction (F(3, 
69) = 1.0, p = 0.40). 

In sum, we obtained no evidence for semi-supervised 
learning in this experiment: though unlabeled items were 
selected from a distribution with a prominent gap that aligned 
well with the true category boundary, experience with this 
distribution did not significantly impact the overall rate of 
learning, the mean accuracy, or the number of participants 
who learned successfully.  

Experiment 2 
Consistent with the observations of Vandist and colleagues 

(2009), Experiment 1 showed little effect of unlabeled 
experience on category learning. What then accounts for the 
strong effects of unlabeled experience previously observed 
by Zhu et al. (2007)? Experiment 2 tested one hypothesis: 
perhaps the difference is observed because, in both the 
current work and in Vandist et al.’s (2009) experiment, the 
stimuli were composed of two psychologically separable 
dimensions. A classic tradition of research in concept 
attainment has shown that, for such stimuli, people often 
adopt a “win-stay-lose-shift” strategy (Bruner, Goodnow and 
Austin, 1956). That is, they formulate a hypothesis about the 
relevant dimension for categorization, then make their 
decision based solely on that dimension until they receive 
evidence that their hypothesis is wrong, at which point they 
shift to a new hypothesis. If feedback is very sparse, 
participants may focus on the dimension they believe to be 
relevant to the exclusion of other dimensions. That is, 
participants may not attend to the competing dimension at all 
on many trials, and so may be exposed to very little 
information about the distribution on this dimension. 
Especially for our stimuli, where pilot studies suggest that 
participants are biased to attend to the irrelevant dimension 
(angle), such strategic/attentional effects might seriously 
attenuate any influence of unlabeled experience. 

To test this hypothesis, we conducted a second study 
identical to Experiment 1 in all but one respect: in 
Experiment 2, participants were required to respond within a 
deadline of 600ms. With this requirement of a very rapid 
response, participants have little time to focus their attention 
on one dimension or the other. Consequently, we predicted 
that the distribution of unlabeled examples would have a 
more significant impact on category learning in this 
paradigm.    

Method 
Participants 50 undergraduate students who did not 
participate in Experiment 1 were recruited for this study in 
return for course credit. All participants had normal or 
corrected-to-normal vision. 
 
Materials and Designs The materials and design were 
identical to Experiment 1, except that participants in both 

groups were told that they would need to respond to each 
item as rapidly as possible. 
 
Procedure Participants were randomly assigned to one of the 
2 conditions, with 25 participants in each group. The 
procedure was identical to Experiment 1 with the following 
exceptions. First, each stimulus appeared onscreen for 125ms 
and was then replaced by a visual mask composed of hash 
marks. Participants were given 600ms from the onset of the 
mask to make their response. If the participant did not 
respond within this window, the computer indicated that the 
response was too slow. On labeled trials that did not meet 
deadline, the computer indicated that the response was too 
slow and also presented the correct category label. In both 
conditions, the deadline was imposed on both labeled trials 
and on unlabeled/filler trials.  

Results 
Trials that did not meet deadline were discarded from the 

analysis; these included just 5% of trials on average. Thus 
most participants were able to respond within the 
time-window on the majority of trials. For the remaining 
trials, we computed the mean accuracy on each successive 
block of 8 labeled trials and on the final unlabeled grid. 
Results are shown in Figure 3. 

Figure 3. Mean proportion correct across all participants 
in Experiment 2 for labeled items in each block and grid. 
Error bars indicate the standard error of the mean. 

In contrast to Experiment 1, participants in the 
semi-supervised condition showed greater accuracy across 
all blocks and on the final grid. A general linear model 
treating time (4 successive blocks of 8 labeled items + grid) 
as a within-subjects factor and learning condition (SS versus 
SO) as a between-subjects factor revealed reliable main 
effects of both factors (for time, F(4,192) = 6.8, p < 0.001; for 
learning condition, F(1,48) = 4.32, p < 0.05) and no 
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interaction between them (F(4, 192) = 1.2, p = 0.32). 
As previously we also computed the number of 

participants who performed to a criterion of 67% or better on 
the final grid in each condition. In the SS condition, more 
than half the participants exceeded this criterion (13/25) 
whereas less than a third did in the SO condition (8/25). 
These odds are different with likelihood p<0.08 according to 
a one-tailed test of the log odds ratio. 

Figure 4. Mean proportion correct in Experiment 2 for 
participants who performed above criterion in the final 
grid. Error bars indicate the standard error of the mean. 

Finally, we again considered mean accuracy over 
successive blocks of labeled items in just the participants 
who performed to criterion according to their grid accuracy. 
In these participants performance was much better in the SS 
than the SO group, with accuracy on labeled items improving 
from 50% to 73% for learners in the SS group but not 
exceeding chance on any block in the SO group. A general 
linear model of these data showed no reliable main effect of 
time or learning condition but these factors did interact 
significantly (F(3,60) = 2.8, p < 0.05) . Inspection of Figure 4, 
which plots these data, explains the absence of any main 
effect and the interaction: performance did not improve 
significantly at all for the 8 participants in the SO group who 
performed above criterion on the final grid, but did improve 
substantially for those participants in the SS group. 
Consistent with these observations, oneway 
repeated-measures ANOVAS conducted separately for the 
two groups showed significantly different accuracy across 
blocks for learners in the SS condition (F(3,36) = 4.6, p < 
0.009) but not in the SO condition (F(3,24) = 0.3, p = 0.83). 

In sum, when responses were speeded, providing little time 
for strategic control of attention, participants in the SS 
condition performed more accurately overall, were 
marginally more likely to learn to criterion, and learned 
labeled items more rapidly than participants in the SO 
condition. 

Discussion 
In two experiments we assessed whether the ability to learn 

a simple 2D binary classification task is influenced by 
unlabeled experiences. In the first experiment, where 
participants responded with no time pressure, we observed 
little evidence that unlabeled data matter: participants 
performed equally well, were equally likely to learn, and 
learned equally rapidly regardless of whether they received 
unlabeled learning items. In the second experiment, which 
was identical in all respects except that participants were 
pressured to respond rapidly, we observed a very different 
pattern: in this case, experience with unlabeled items led to 
better overall performance, a greater likelihood of learning to 
criterion, and more rapid learning compared with supervised 
learning only. Like Vandist et al (2009), we found little 
evidence that unlabeled data influence category learning 
when response times were unconstrained. When responses 
were speeded, we replicated Zhu et al.’s (2007) finding that 
unlabeled data can produce substantial effects. What 
accounts for these different patterns? 

One possibility concerns the extent to which participants 
can selectively attend to only some of the stimulus feature 
dimensions. Prior work has shown that, in categorization 
tasks where it is possible for participants to form an explicit 
categorization rule, learning depends importantly upon 
mechanisms of attention and cognitive control (Ashby and 
Maddox, 2005). In Zhu et al.’s (2007) work, stimuli varied 
along a line in a complex multidimensional feature 
space—therefore it was impossible for participants to 
selectively attend to information that was irrelevant to the 
category learning task. In contrast, in Vandist’s et al.’s (2009) 
work and the current study, stimuli varied in two 
psychologically separable dimensions. If participants 
selectively attended to only one of these, so that 
distributional information about the unattended dimension 
was not available to the learning system, effects of unlabelled 
data might be attenuated or eliminated—producing the null 
result in Vandist’s (2009) work and in Experiment 1. 

On this hypothesis, the robust influence of unlabeled 
data in Experiment 2 was observed because participants 
lacked sufficient time to selectively attend to just one feature 
dimension. If, under speeded conditions, both stimulus 
dimensions are fully represented, then the unlabeled 
distribution should have a more robust impact on learning. 
On this view, it is not the speed of response that matters per 
se, but whether or not the learning system has access to all of 
the relevant distributional information. If this account is 
correct, it predicts that unlabeled data should have a stronger 
effect for multidimensional stimuli where the stimulus 
dimensions are not psychologically separable, even if 
response times are unconstrained. We leave this prediction to 
future work.  

We further note that, because there are many factors that 
differentiate Zhu et al’s (2007) study from that of Vandist and 
colleagues (2009), there remain several additional 
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hypotheses about the difference in their findings. The current 
study isolates speed of response as an important mitigating 
factor, but other potentially important factors—including the 
orientation of the category boundary in the stimulus space, 
the ratio of labeled to unlabeled examples, and the temporal 
distribution of labeled examples over the learning 
session—should be parametrically explored in future work. 

More generally, the question of whether or not people 
make use of unlabeled observations when learning categories 
has strong implications for theories of human conceptual 
knowledge. Many researchers have noted that even young 
children are able, with just a handful of learning experiences, 
to infer the extension of many category labels (Hall and 
Waxman, 2004; Keil, 1979; Markman, 1989). Once they 
reach the right age, most children need hear the word “horse” 
only once or twice before being able to make a reasonable 
guess about which objects in the world are horses and which 
not. This rapid learning from sparse data is sometimes held to 
indicate that children bring strong inductive biases to bear on 
word-learning (Xu and Tenenbaum, 2007).  

Semi-supervised learning suggests a different 
explanation: Maybe children can learn from just a few 
labeled examples because they are marrying these sparse 
episodes to knowledge gleaned from a vast amount of 
unsupervised experience. If children assume that category 
labels tend to span relatively dense clusters in a conceptual 
feature space, and that category boundaries follow the 
low-density valleys in this space, then—to the extent that this 
assumption holds—they only need a small number of labeled 
experiences to work out which labels “go with” which 
clusters. This explanation frees theories of word-learning 
from having to rely too heavily on strong inductive biases to 
explain rapid word-learning abilities in children. 

Acknowledgements 
This work was supported in part by a grant from the Air 

Force Office of Scientific Research (AFOSR project number 
FA9550-09-1-0313) and in part by NSF project 
IIS-0916038. 

 

References 
Anderson, J. R. (1991) The adaptive nature of human 

categorization. Psychological Review, 98, 409-429. 

Ashby, F. G. and Maddox, W. T. (2005). Human category 
learning. Annual Review of Psychology, 56, 149-178. 

Bruner, J. S., Goodnow, J. J. and Austin, G. A. (1956). A 
Study of Thinking. Hoboken NJ: John Wiley and Sons. 

Chapelle, O., Zien, A. and Scholkopf, B. (2006). 
Semi-Supervised Learning. Cambridge, MA: MIT Press. 

Fried, L. S. and Holyoak, K. J. (1984). Induction of category 
distributions: A framework for classification learning. 

Journal of Experimental Psychology: Learning, Memory 
and Cognition, 10 (2), 234-257. 

Gluck, M. A. and Bower, G. H. From conditioning to 
category learning: An adaptive network model. Journal 
of Experimental Psychology: General, 117(3), 227-247. 

Hall, D. G. and Waxman, S. R., Eds. (2004). Weaving a 
Lexicon. Cambridge, MA: MIT Press. 

Keil, F. C. (1979). Semantic and Conceptual Development: 
An Ontological Perspective. Cambridge, MA: Harvard 
University Press. 

Kruschke, J. K. (1992). An exemplar-based connectionist 
model of category learning. Psychological Review, 99(1), 
22-44. 

Love, B., Medin, D. L. and Gureckis, T. M. (2004). 
SUSTAIN: A network model of category learning. 
Psychological Review, 111(2), 309-332. 

Markman, E. M. (1989) Categorization and Naming in 
Children: Cambridge, MA: MIT Press. 

Nosofsky, R. (1986). Attention, similarity, and the 
identification-categorization relationship. Journal of 
Experimental Psychology: General, 115(1), 39-57. 

Schyns, P. G. (1991). A modular neural network model of 
concept acquisition. Cognitive Science, 15, 461-508. 

Vandist, K., de Schryver, M. and Rosseel, Y. (2009). 
Semi-supervised category learning: The impact of 
feedback in learning the information-integration task. 
Attention, Perception and Psychophysics, 71(2), 
328-341. 

Xu, F. and Tenenbaum, J. (2007). Word learning as Bayesian 
inference. Psychological Review, 114, 245-272. 

Zhu, X. and Goldberg, A. B. (2009). Introduction to 
Semi-Supervised Learning. San Rafael: Morgan and 
Claypool. 

Zhu, X., Rogers, T. T., Qian, R., and Kalish, C. (2007). 
Humans perform semi-supervised classification too. 
Proceedings of AAAI 2007. 


