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Abstract

Empirical evidence shows that in favorable situatisesi-supervisetearning
(SSL) algorithms can capitalize on the abundancerdébeledtraining data to
improve the performance of a learning task, in the sense¢hagrlabeledtrain-
ing data are needed to achieve a target error bound. Howewaher situations
unlabeled data do not seem to help. Recent attempts at tloadlyecharacter-
izing SSL gains only provide a partial and sometimes appigreanflicting ex-
planations of whether, and to what extent, unlabeled datdedp. In this paper,
we attempt to bridge the gap between the practice and thé@gnoi-supervised
learning. We develop a finite sample analysis that chaiiaetethe value of un-
labeled data and quantifies the performance improvemensbf®mpared to
supervised learning. We show that there are large classg®blems for which
SSL can significantly outperform supervised learning, iitdisample regimes
and sometimes also in terms of error convergence rates.

1 Introduction

Labeled training data can be expensive, time-consumingléficlilt to obtain in many applications.
For example, hand-written character or speech recogritmmhdocument classification require an
experienced human annotator, or in some applications edeh inight be the outcome of a spe-
cially designed experiment. Semi-supervised learnind J$8ns to capitalize on the abundance
of unlabeled training data to improve learning performamcéhorough survey of semi-supervised
learning literature is available in [1]. Empirical eviderguggests that in certain favorable situations
unlabeled data can help, while in other situations it dods Ae a result, there have been several
recent attempts [2, 3, 4, 5, 6, 7] at developing a theoretiodkerstanding of semi-supervised learn-
ing. Itis well-accepted that unlabeled data can help ontlygfe exists éink between the marginal
data distribution and the target function to be learnt. Tammon types of links considered are the
cluster assumption [8, 4, 5] which states that the targettfan is locally smooth over subsets of the
feature space delineated by some property of the marginaltggbut may not be globally smooth),
and the manifold assumption [5, 7] which assumes that tiget&unction lies on a low-dimensional
manifold. In the cluster case, knowledge of these sets extihe problem of estimating an inhomo-
geneous function to a homogeneous function, and in the widrdése, knowledge of the manifold
reduces a high-dimensional problem to a low-dimensior@blem. Thus, knowledge of these sets
which can be gleaned from unlabeled data, simplify the legrtask. However, recent attempts
at characterizing the amount of improvement possible utitese links only provide a partial and
sometimes apparently conflicting (for example, [5] vs. [@fplanations of whether or not, and to
what extent semi-supervised learning helps. In this papebridge the gap between these seem-
ingly conflicting views and develop a minimax framework kzhee finite sample bounds to identify



situations in which unlabeled data help to improve learni@gr results quantify both the amount
of improvement possible using SSL as well as the the relatlge of unlabeled data.

In this work, we focus on learning under the cluster assumptiVe formalize this assumption in the
next section and go on to establish that there exist nonpremclasses of distributions, denoted
Pxy, for which the decision sets (over which the target funciismooth) are discernable from un-
labeled data. Moreover, we show that there exlsirvoyantsupervised learners that, given perfect
knowledge of the decision sets denoted®ycan significantly outperform any generic supervised
learnerf,, based on the labeled samples in these classes. That iR denotes a risk of interest,

fp_,n denotes the clairvoyant supervised learner, Briitnotes expectation with respect to training
data, thersupp, .. E[R(fADyn)] < infy, supp, ., E[R(f,)]. This would imply that knowledge of
the decision sets simplifies the supervised learning taske® on this, we establish that there also
exist semi-supervised learners, denof%, that usem unlabeled examples in addition to the
labeled examples in order to estimate the decision setshvggrform as well a§D7n, provided that

m grows appropriately relative to. Specifically, if the error bound fofp_,n decays polynomially
(exponentially) inn, then the number of unlabeled dataneeds to grow polynomially (exponen-
tially) with the number of labeled data We provide general results for a broad range of learning
problems using finite sample error bounds. Then we cons&gession problems in detail, and
examine a concrete instantiation of these general resylieiving minimax lower bounds on the

performance of any supervised learner and compare thaiper igpunds on the errors ¢f ,, and
frmn-

In their seminal papers, Castelli and Cover [9, 10] had ssiggkthat, in the binary classification
setting, the marginal distribution can be viewed as a méairclass conditional distributions:
Px(z) =aP(z|Y =1)4+ (1 — a)P(z|Y =0),
wherea = P(Y = 1). If this mixture is identifiable, that is, learninBx is sufficient to resolve
the component distributions, then the classification pwbteduces to a simple hypothesis testing
problem of deciding the labed(1) for each component. For hypothesis testing problems,rtioe e
converges exponentially fast in the number of labeled exesngvhereas the error convergence is
typically polynomial for classification. The ideas in thiapger are similar, except that we do not
require identifiability of the mixture component densitiaad show that it suffices to only approxi-
mately learn the decision sets over which the label is smddtre recent attempts at theoretically
characterizing SSL have been relatively pessimistic. Rigpt] establishes that for a fixed collec-
tion of distributions satisfying a cluster assumption alrdled data do not provide an improvementin
convergence rate. A similar argument was made by Laffet\aasserman [5], based on the work
of Bickel and Li [11], for the manifold case. However, in aeatpaper, Niyogi [7] gives a construc-
tive example of a class of distributions supported on a notohifhose complexity increases with the
number of labeled examples, and he shows a lower boufi{ Of for any supervised learner (that
is, the error of any supervised learner is bounded from bélpa constant), whereas there exists a
semi-supervised learner that can provide an error bourd@{of '/2), assuming infinite unlabeled
data. We bridge the gap between these seemingly conflictevgsy Our arguments can be under-
stood by the simple example shown in Fig. 1, where the digioh is supported on two components
separated by a marginand the target function is smooth over each component. Gifigrite sam-
ple of data, these density sets may or may not be discernaplending on the sampling density
(see Fig. 1(b), (c)). Ify is fixed (this is similar to fixing the class of cluster-baséstributions in [4]
or the manifold in [5, 11]), then given enough labeled datagesvised learner can achieve optimal
performance (since, eventually, it operates in regimef(€jg 1) and unlabeled data may not help.
Thus, in this example, there is no improvement due to unéabebta in terms of the rate of error
convergence for a fixed collection of distributions. Howeg&ince the underlying true separation
between the components is unknown, given a finite sampletaf theere always exists a distribution
for which these density sets are indiscernible (e.g= 0). This perspective is similar in spirit to the
argumentin [7]. We claim that meaningful characterizagiohSSL performance and quantifications
of the value of unlabeled data require finite sample errondspand that rates of convergence and
asymptotic analysis may not capture the distinctions betw&SL and supervised learning. Simply
stated, if the component density sets are discernable frbnitea sample sizen of unlabeled data
but not from a finite sample size < m of labeled data, then SSL can provide better performance
than supervised learning. Further, we also show that threreeatain plausible situations in which
SSL yields rates of convergence that cannot be achievedybsugrervised learner.
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Figure 1: (a) Two separated high density sets with diffelan|s that (b) cannot be discerned if the
sample size is too small, but (¢) can be estimated if sampisityas high enough.

The rest of this paper is organized as follows. In the nextiaecwe describe a mathematical
model for the cluster assumption. Section 3 describes aedwe for learning the decision sets
using unlabeled data. Our main result characterizing ttaive performance of supervised and
semi-supervised learning is presented in Section 4, anib8eécapplies the result to the regression
problem. Conclusions are discussed in Section 6, and pavefdeferred to Section 7.

2 Characterization of model distributions under the cluster assumption

In this section, we describe a mathematical model for thetetutassumption. We define the col-
lection of joint distributionsPxy (v) = Px x Py|x indexed by a margin parameters follows.
Let X, Y be bounded random variables with marginal distributfon € Px and conditional label
distribution Py x € Py|x, supported on the domaiti = [0, 1],

The marginal density(z) = Zszl arpi(z) is the mixture of a finite, but unknown, number of
component densitiefp;, } &, , whereK < oc. Here the unknown mixing proportiong > a > 0
and Zszl ar = 1. In addition, we place the following assumptions on the omgtcomponent
densities{p, } 5, :

1. pi is supported on a unique compact, connected’getC X’ with Lipschitz boundaries.
Specifically, we assume the following form for the comporsemiport sets:

Cr={z=(21,...,2q4) € X : g,(el)(arl,...,xd,l) <zq< g](f)(arl,...,xd,l)},

whereg,(cl)(-),g,(f)() ared — 1 dimensional Lipschitz boundary functions with Lipschitz
constantl.. See Figure 2 for an illustrative example with= 2.

This form is a slight generalization of the boundary fragh@ass of sets which is used as
a common tool for analysis of learning problems [12]. Bougdeagment sets capture the
salient characteristics of more general decision setggsiocally, the boundaries of general

sets are like fragments in a certain orientation.
2. pi is bounded from above and belaw< b < pi, < B.

3. pg is Holder«; smooth oy, with Holder constant;. Formally,p, has continuous partial
derivatives of up to ordely, ], where[a;] denotes the maximal integer thatdsa;, and
36 > 0 such that

Vz,x € Ck : ||z — || < = |pp(2) — TPe(z, [c1])| < k1|2 — z||™

wherer,aq > 0, TP, (-, [o1]) denotes the degréde; ]| Taylor polynomial approximation
of p;, expanded around, and|| - || denotes Euclidean norm.

Let the conditional label density on each compon@ptbe denoted by, (Y|X = z). Thus, a
labeled training pointX,Y") is obtained as follows. With probability;, X is drawn fromp;, and

Y is drawn fromp, (Y| X = z). In the supervised setting, we assume accesslabeled training
datal = {X;,Y;}, drawn i.i.d according t®xy € Pxy (), and in the semi-supervised setting,
we assume access to additional unlabeled training daté = {X;}!", drawn i.i.d according to
Px € Px.
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Figure 2: The margin measures the minimal width of a decision set, or separagbmden support
sets of the marginal mixture component densities. The masgpositive if there is no overlap
between the component support sets, and negative otherwise

Let D denote the collection of all non-empty sets obtained agsatgions of{C} | or their
complementd C¢}E |, excluding the setX_, C¢ that does not lie in the support of the marginal
density. Observe thdD| < 2%, and in practical situations the cardinality Bfis much smaller
as only a few of the sets are non-empty. The cluster assumigstithat the target function will be
smooth on each sé? € D, hence the sets i are calleddecision setsAt this point, we do not
consider a specific target function; in Section 5, we will@fyethe smoothness assumptions on the
target function in the regression setting.

The collectionPxy is indexed by a margin parameter which denotes the minimum width of
a decision set or separation between the component sumistt;s The marginy is assigned a
positive sign if there is no overlap between componentgratise it is assigned a negative sign as
illustrated in Figure 2. Formally, fof, k € {1, ..., K}, let
dir = mi () _ (2 Lk
k= ming ge 1.2y 1977 — gp" lloo j#k,
1 2
di = 19" = 97 1o,
where|| - |~ denotes the sup-norm, and

_ 1 ifC;NC,=0Vj#k, wherej, ke {1,...,K}
9= -1 otherwise

Then the margin is defined as

=o0- min  dj.
jke{l,.. K}

3 Learning Decision Sets

Ideally, we would like to break a given learning task into agpe subproblems on eaé¢h € D,
since the cluster assumption is that the target functiomosh on each decision set. In the section,
we show that the decision sets are learnable using unladated Note that the marginal densijty

is smooth within each decision sbt € D, but exhibits jumps at the decision boundaries since the
component marginal mixture densities are bounded away fienm Hence, the collectiah can be
learnt by estimating the marginal density from unlabele@d @a follows:

1) Marginal density estimation— The procedure is based on the sup-norm kernel density atsiim
proposed in [13]. Consider a uniform square grid over theala®@ = [0, 1]¢ with spacing2h.,,,
whereh,, = ko ((logm)?/m)'/? andk, > 0 is a constant. For any pointc X, let z denote the
closest point on the grid. L&t denote the kernel anH,,, = h,,I, then the estimator gf(x) is

Ple) = —r 3 G (X - 9).
moi=1
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2) Decision set estimation- Two pointszy, 2o € X are said to beonnecteddenoted byr; « o,
if there exists a sequence of points = z1,29,...,2-1,2; = x2 such thatzs,..., 2,1 € U,
lz; — zj1]] < 2v/dh,,. That is, there exists a sequence2efdh,,,-dense unlabeled data points
betweenz; andz,. Two pointszy,zo € X are said to bg-connectedf in addition to being
connected, the sequence is such that for all points thafgdti;, — z;|| < h., logm, [p(z;) —

p(zi)| < 6m = (logm)~'/3. That is, there exists a sequence2afdh,,-dense unlabeled data
points betweerr; andx, such that the marginal density varies smoothly along theessce. All
points that are pairwise p-connected specify an empirieaisibn set. This decision set estimation
procedure is similar in spirit to the semi-supervised leggalgorithm proposed in [14]. In practice,
p-connectedness only need to be evaluated for the test joamd the training points with labels,
thatis{X;}, € L.

The following lemma shows that if the margin is large relatto the average spacing between
unlabeled data pointsi{(—'/9), then with high probability, two points are p-connected (h the
same empirical decision set) if and only if they lie in the sagkecision seD € D, provided the
points are not too close to the decision boundaries.

Lemma 1. Denote the set of boundary points as

B:= {z:zd:g,(cp)(zl,...,zd,l),k6{1,...,K},p€ {1,2}}

and define the boundary set as

Rp:={x: infBHx — 2| < 2Vdh,,}.
z€E

If |y| > C,(m/(logm)?)~'/4, whereC, = 6+/dro, then for allp € Py, all pairs of points
x1, 22 € SUpfp) \ R and all D € D, with probability> 1 — 1/m,

x1 &y ifandonlyif  zy, x5 € D,
for large enoughm > mg = mo(pumin, K, k1,d, a1, B, G, ko).*

The proofis given in Section 7.1.

Remark: If we are only concerned with distributions that have a eesihargin, then only connect-
edness is needed to identify the decision sets. In facthBpbsitive margin case, the decision sets
correspond to connected components of the support set, ansdidrff accurate support set estima-
tion proposed in [15] (also see [16]) can be used to estinmatel¢cision sets instead of identifying
connecting sequences. One advantage of using Hausdauffeesupport set estimation over con-
necting sequences is that we can also handle densitiesaimait ump (are not bounded away from
zero) but transition gradually to zero. However, in the risgamargin case p-connectedness is
needed since the supports of the mixture constituents sncige are overlapping and the decision
sets are characterized by a sharp transition in the density.

4 SSL Performance and the Value of Unlabeled Data

We now state our main result that characterizes the perfocenaf SSL relative to a clairvoyant
supervised learner (with perfect knowledge of the decisiets), and follows as a corollary to the
lemma stated above. L& (f) denote a risk of interest for a learngand the excess risk(f) =
R(f) — R*, whereR* is the infimum risk over all possible learners. The risk isegiby the
probability of errorPxy (f(X) # Y') for classification and the mean square eftary [(f(X) —
Y')?] for regression.

Corollary 1. Assume that the excess riSks bounded. Suppose there exists a clairvoyant super-
vised learnerfp ,,, with perfect knowledge of the decision s&tsfor which the following finite
sample upper bound holds

sup E[c‘)(fp,n)] < e2(n).
Pxy ()

'Dependence of a constant Ghimplies the constant depends on a norm or moment of the kénel



Then there exists a semi-supervised Iearﬁ,@grn such that ify| > C,(m/(logm)?)~1/4, then

N 1 m —1/d
sup E[E(fmn)] < €2(n)+ O <E +n (ﬁ) ) .

PXY(’Y) logm

The proofis given in Section 7.2. This result captures tiserse of the relative characterization of
semi-supervised and supervised learning for the margiedoamdel distributions. It suggests that
if the setsD are discernable using unlabeled data (the margin is largegincompared to average

spacing between unlabeled data points), then there exdstmasupervised learner that can perform
as well as a supervised learner with clairvoyant knowledgb@decision sets, provided > n,

s0 that(n/ex(n))? = O(m/(logm)?) and the additonal term in the performance bound of the
semi-supervised learner is small comparee:t) . This implies that if»(n) decays polynomially
(exponentially) inn, thenm needs to grow polynomially (exponentially)in

Further, suppose that the following finite sample lower lbloolds for any supervised learner based
onn labeled data:

inf sup E[E(fa)] > e1(n).

In Pxy ()
If e2(n) < €1(n), then there exists a clairvoyant supervised learner witfepeknowledge of the
decision sets that outperforms any supervised learnedieg not have this knowledge. Hence,
Corollary 1 implies that SSL can provide better performathes any supervised learner provided
(i) m > n so that(n/es (n))d = O(m/(logm)?), and (ii) knowledge of the decision sets simplifies
the supervised learning task, so thatn) < e;(n). In the next section, we provide a concrete
application of this result in the regression setting. Asmapdeé example in the binary classification
setting, ifp(x) is supported on two disjoint sets andAfY = 1|X = z) is strictly greater than
1/2 on one set and strictly less thar2 on the other (that is, the label is constant on each set),
then perfect knowledge of the decision sets reduces thégunaio a hypothesis testing problem for
which ez(n) = O(e=“™), for some constarn® > 0. However, ify is small relative to the average
spacingn /¢ between labeled data points, tharin) = cn~'/¢ wherec > 0 is a constant. This
is because in this case the decision set boundaries can enbcalized to an accuracy af /¢,
the average spacing between labeled data points. Sincetmelaries are Lipschitz, the expected
volume that is incorrectly assigned to any decision set éagr tharcn='/¢, wherec > 0 is a
constant. This implies that the overall expected exceksgigreater thamn~'/¢. A formal proof
for the lower bound can be derived along the lines of the méxitower bound proof for regression
in the next section. Thus, an exponential improvement isiptesusing semi-supervised learning
provided the number of unlabeled data exampiegrows exponentially im, the number of labeled
data examples. In other words, to obtain the same perforeiamend as a supervised learner with
n labeled examples, a semi-supervised learner only néeddog n labeled examples in the binary
classification setting, and the numberof unlabeled examples needed is exponential jrthat is,
polynomial inn.

5 Density-adaptive Regression

Let Y denote a continuous and bounded random variable. Underestjearor loss, the optimal
decision rulef*(z) = E[Y|X = z], and the excess risk(f) = E[(f(X) — f*(X))?]. Recall that
pr(Y|X = x) is the conditional density on theth component and I€&;, denote expectation with
respect to the corresponding conditional distributione Tégression function on each componentis
fe(z) = E¢[Y|X = 2] and we assume thatfér=1,..., K

1. fx is uniformly bounded|fx| < M.

2. [y is Holder«w, smooth onC), with Holder constank..

This implies that the overall regression functiff{z), given as

X _ = appr ()
Fr@) =Y = fula),

K
k=1 Zj:l a;p;()
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Margin range SSL upper bound  SL lower bound SSL helps

gl ea(n) e1(n)
Y Z Y0 n—2/(2a+d) n—20/(20+d) No
Y > con —1/d n72a/(2a+d) n*2a/(2a+d) No
Con —1/d 1>dy > C, (W)fl/d » n72a/(122+d) n,i/z Yes
CO((lognm)_z) / >~ >-C, (W)* / n—1/ -1/ NoO
-C, (W) 1/d v n—20/(2a+d) n—1/d Yes
—Y > n—2e/(2a+d) n—1/d Yes

Table 1: Comparison of finite sample lower bounds on the mgaare error for supervised learning,
with finite sample upper bounds on the mean square error for-s@pervised learning, for the
margin based model distributions. These bounds holdifos n2? andd > 2a/(2a — 1), and
suppress constants and log factors.

is piecewise Holders smooth, wherev = min(aq, as). That is, f* is Holder« smooth on each
D € D, except possibly at the decision boundaries. Since a aldenooth function can be locally
well-approximated by a Taylor polynomial, we propose théofeing semi-supervised learner that
performs local polynomial fits within each empirical deoisiset, that is, using labeled training data
that are p-connected as per the definition in Section 3. Vhdpatially uniform estimator suffices
to estimate a Holdes smooth function, we use the following spatially adaptivieneator proposed

in Section 4.1 of [17] which is shown to yield minimax optinperformance for piecewise-smooth
functions. This ensures that when the decision sets argedediible using unlabeled data, the semi-
supervised learner still achieves an error bound that isp ipgarithmic factors, no worse than the
minimax lower bound for supervised learners.

J?m,n,w(') = arg ?,%?Z(Y; - (X ))211&)( + per(f’)
’ i=1

and N R

frmn () = finn,2().
HereI' denotes a collection of piecewise polynomials with quattizoefficients of degre@;
(the maximal integek «), defined over recursive dyadic partitions of the dom&in= [0, 1]
with cells of sidelength betweer [og(r/logn)/(2a+d)] and2 flog(n/logn)/d] (see [17] for details).
The penalty term peif’) is proportional tolog (>~ ; Lry, ) - #f', where>~" | 1 2B X, simply
denotes the number of labeled training data that are p- -cdediéor, that is are in the same em-
pirical decision set ag, and #f’ denotes the number of cells in the recursive dyadic pantitio
on which f” is defined. It is shown in [17] that, under the Holdemssumption, this estimator
obeys a finite sample error boundsof2¢/(22+d) “ignoring a logarithmic factor. Also, it is shown
that for piecewise Holdes- smooth functions, this estimator yields a finite samplerdoound of
max(n 20/ (atd) n=1/d) ignoring a logarithmic factor.

Using these results from [17] and Corollary 1, in SectionZ’,.@e derive finite sample upper bounds
on the mean square excess risk of the semi-supervised t€&®ik) described above. Also, we de-
rive finite sample minimax lower bounds on the performancanyf supervised learner (SL) based
onn labeled examples in Section 7.3.2. Our results are sumethiizTable 1, for model distribu-
tions characterized by various values of the margin pam@metn the table, we suppress constants
and log factors in the error bounds, and assumersthat n>? so that the performance bound on
the semi-supervised learner given in Corollary 1 esséytahles as,(n). The constants, and

C, characterizing the margin only depend on the fixed paramefethe classPxy (y). Also, v
denotes a constant, and thus the cages ~, and —y, > ~ correspond to considering a fixed
collection of distributions (whose complexity does notrga with the amount of data).

Consider the case when the dimension is large or the targetiéun is smooth enough so that
d>2a/(2a —1). If d < 2a/(2a — 1), then the supervised learning error incurred by averaging
across decision sets (which behavestiké/?) is smaller than error incurred in estimating the target
function away from the boundaries (which behaves tiké*/?*+d). Thus, whenl < 2a/(2a —



1), learning the decision sets does not simplify the supedvisarning task, and there appears to
be no benefit to using a semi-supervised learner. So focusirige case whed > 2a/(2a — 1),
the results of Table 1 state that if the margins large relative to the average spacing between
labeled data points—'/¢, then a supervised learner can discern the decision saisasely and
SSL provides no gain. Whefn > o, we consider a fixed collection of distributions, and this
argument is similar in spirit to the argument made by Lajfemhd Wasserman [5]. However, if
v > 0is small relative to» /¢, but large with respect to the spacing between unlabeledmtints
m~'/4, then the proposed semi-supervised learner provides iredrerror bounds compared to
any supervised learner. This is similar in spirit to the argutmeade by Niyogi [7] that the true
underlying distribution can be more complex than can beetdised using labeled data. || is
smaller thann~'/4, the decision sets are not discernable even with unlabelieckshd SSL provides
no gain. However, notice that the performance of the sepétised learner is no worse than the
minimax lower bound for supervised learners since we chosestimator that is also optimal for
piecewise smooth functions (recall that the overall tafgattion is piecewise smooth). In the
~ < 0 case, when the component support sets can overlap, if theitadg of the margirry| larger
thanm—1/¢, then the semi-supervised learner can discern the dedsisnand achieves smaller
error boundsif—2%/(2a+4)) whereas these sets cannot be as accurately discerney byprvised
learner. For the overlap case € 0), the supervised learners are always limited by the ercuried
due to not resolving the decision séts /). In particular, for the fixed collection of distributions
with ~ 23 —70, a faster rate of error convergence is attained by SSL cosdp@ar SL, provided
m > n-.

6 Concluding Remarks

In this paper, we develop a framework for evaluating the grerince gains possible with semi-
supervised learning under a cluster assumption using faiteple error bounds. The theoretical
characterization we present explains why in certain snatunlabeled data can help to improve
learning, while in other situations they may not. We demiatstthat there exist general situations
under which semi-supervised learning can be significanghesor to supervised learning, in terms
of achieving smaller finite sample error bounds than anysiged learner, and sometimes in terms
of a better rate of error convergence. Moreover, our reslfis provide a quantification of the

relative value of unlabeled to labeled data.

While we focus on the cluster assumption in this paper, wgeottre that similar techniques can

be applied to quantify the performance of semi-supervisathing under the manifold assumption
as well. In the manifold case, the curvature and how closenifugifold can get to itself or another

manifold will play the role that the margin plays under thestér assumption. In particular, we be-
lieve that the use of minimax lower bounding techniquessersal because many of the interesting
distinctions between supervised and semi-supervisediteaoccur only in finite sample regimes,

and rates of convergence and asymptotic analysis may notregphe complete picture.

In this work, we also show that though semi-supervised lagrsimplifies the learning task when

the link relating the marginal and conditional distribuigoholds, it is possible to ensure that the
performance of the semi-supervised learning does notidedte when the link is not discernable
using unlabeled data or does not hold. For example, when éingimis small relative to the spacing

between unlabeled data, the decision sets cannot be iddnti§ing unlabeled data, however by
employing a more sophisticated tool (a learner that hasmgbtperformance for piecewise smooth
functions) similar to what a supervised learning algorittwould use, we ensured that the SSL
performance is no worse than what a supervised learner vwamfigtve. In this sense, the semi-
supervised learner we propose is somewhat agnostic. Howktlee number of decision sets can
grow with n, the semi-supervised learning algorithm can perform whesgause it would break

the problem into a large collection of subproblems. Thuss @f interest to develop an agnostic
procedure that can identify such situations.

7 Proofs

Since the component densities are bounded from below aneealdefinep,,;, := bming ap <
p(x) < B =: Pmax-



7.1 Proof of Lemmal

We present the proof in two steps - first, we establish som#tsesbout the proposed kernel density
estimator, and then using the density estimation resuistablish that the decision sé&san be
learnt based only on unlabeled data.

1) Density estimation:

Theorem 1. [Sup-norm density estimation of non-boundary points] Consider the kernel density
estimator proposed in Sectionp8z) = —-— >, G(H,,' (X; — &)), whereH,, = hp1, hy, =
rko((logm)?/m)Y?, ko > 0 is a constant, and: denotes the point closest ioon a uniform grid
over the domaim’ = [0, 1] with spacingh,,,. Let the kernel satisfy

1 j=0

SUpPHG) = [~1,1]%, G € (0, Gnax] @nd u! G(u)du = { 0 1<j<[o]

[_lal]d
where supf) denotes the support of a function, then for alle Px, with probability at least

1—1/m,
~ ; logm
sup [p(x) —p(x)| < c3 hgxlm(l,m) L2 e
z€SUPQAp)\ Rz mhd,

form > m; = m1(G, B), wherecs = ¢3(K, k1,d, a1, B,G) > 0 is a constant. Notice that,,
decreases with increasing.

Proof. Consider any € Px. Sincep(x) = p(z),
sup  |p(x) —p(z)| < sup  [p(z) —p(T)| + sup lp(z) —p(@)| (1)
zeSUPRP)\R 5 x€SUPAp)\R 5 z:2eSUPQp)\R s

To bound the first term of (1), observe that sinces supfp) \ Rs and ||z — z|| < Vdh,, by
definition of R if = € C}, thenz € C}, and vice versa. Thus, for all € supgp) \ Rz,

K
p(x) = p(@)] = > axpr(z) — axpr(z Z a [pr(x) — pr(2)]
k=1
= Z ak|pe(z) — pr(2)|

k:x,zeCl

<Zak<,§ [Z:(J) a‘)

k:x,z€C,
min(1l,«
S C1 hm ( 1)7

wherec; = ¢1 (K, k1,d, a1, B) > 0is a constant. The last step follows sincejfis Holder«;
smooth, then all its derivatives up ie, | are bounded anii: — z|| < v/dhy,.

To bound the second term, notice that forall z € supfp) \ Rz,
p(z) — (@) = [p(z) — E[p(2)]| + [E[p(Z)] — p(7)|

We now bound the two terms in the last expression.

1. Forallz : = € supfp) \ Rz, consider

T+hom,
p@) g [ G = 2y

Notice that given the conditions on the kernel,

p(T) = /11]dz

p(J)

hd
he )z



Therefore, we get

Ip(z) — E[p(2)]]
1 [Tthm o [l 9 (z)
=l [ et -a) (_Z T
- =
1 Tthm, ) ) K [a] pl(cj)(f)
[ et e Y e | 3
m k=1 j=0
1 T+hom, . o
S, G(H,, (y —z))rly — 2| dy

=m / [ul|**Gu)du | byt = co by,
[7171]d

wherecy = co(k1, G, 1) > 0 is a constant.

. Now consider

d

IN

sup
z:xcSUPQRp)\R5

|E[p(z)] — p(z)| > 6) Z p
yp

;P

IN

whereZ; = G(H,,*(X; — z)). Now observe thaft[Z;] —
Ttho
var(z;) < E[Z7] = / G*(H,,!
i_hwn

([E[p(@)] — p(z)] > )
( i > mhd )
(zm: |E[Z]) — Zi| > mhl, )

Z;i| < Gmax and

IN

B, / G2 (w)p(z + Hu)du
(1,14

d 2 =
[ G o)

2|Gl3p(2)hs, < 2||GII3Bhs,

Thus, using Bernstein’s inequality, we get:

(mhe)2/2

P <Z [E[Zi] — Z;i| > mhie) < exp {—
i=1

logm

Settinge = 4(|G||2v/B, /252,
m > my =mq(G, B), we get:

d

sup E[p(@)] - p(z)| > 4/|Gll2VB

z:xcSUPQAp)\Rs

<h?
1

<m-—
m2

10

2||G|I3Bmhd, + Gmaxmhd e/3

logm
mhd,

<Y e
T

|

and observing tha# ,.xe/3 < 2||G||3B for large enough

)

16(|G||3Bmhd, logm /2
4||G(13Bmhg,

|

exp {—2logm}

1

m



Therefore we get, with probability at leakt— 1/m, for m > m, (G, B) we have the following
bound on the second term

P o logm
sup  |p(&) — BE)| < c2h +4)|G) VB |~
z:x€SUPQRp)\R5 mhm

And putting the bounds on the two terms together: Fop alPx, with probability at least — 1 /m,
form > m4 (G, B)

D i logm
sup Ip(z) — p(x)| < cs h;n@ln(l,al) n ’
zeSUP@p)\R 5 mhd

wherecs = c3(K, k1, d, a1, B,G) > 0 is a constant. O

Remark: This bound can be tightened © (2% + +/logm/mhé) by also estimating the
density derivatives at the grid points and definjp(g:) as the Taylor polynomial approximation
expanded around the closest grid paintsee [13]. Also, the arguments of the proof hold if
R = Ko(logm/m)~1/(d+291) Hence, we recover the minimax rate@f(m/ log m)~1/(d+2e1)

for sup-norm density estimation of a Holder-smooth density. However, we want to characterize
the largest collection of distributions (smallest marghgt a semi-supervised learner can handle,
and thus we seek the smallést, (which determines the smallest margin that can be handéed) f
which the bound,,, decreases with increasimng.

Corollary 2. [Empirical density of unlabeled data] Under the conditions of Theorem 1, for all
p € Px andm > m3 = ms(pmin, K, k1, d, a1, B, G, ko), with probability at leastl — 1/m, for
all z € supgp) \ Rz, there exists an unlabeled data poi} € ¢/ such that| X; — z|| < V/dh,,.

Proof. From Theorem 1, for alt € supgp) \ Rz, form > m, (G, B)
I/)\(I) Z p(ZC) — €m Z Pmin — €m > 0
The last step follows for large enough > ma = ma(pmin, K, k1, d, a1, B, G, ko) SiNCee,, is

decreasing withn. This implies thad """ | G(H,,*(X; — z)) > 0 for m > mg = max(my, m2),
and therefore there exists an unlabeled data point withih,,, of x. O

2) Decision set estimation - Using the density estimation results, we now show thiatlit> 6v/dh,,,
then for allp € Px, all pairs of pointszy, 22 € supfp) \ Rg and allD € D, form > mg =
mo(Pmin, K, k1,d, a1, B, G, ko) with probability > 1 — 1/m, we haver; &L 2, if and only if
1,22 € D. We establish this in two steps:

1. IleD,IQ ¢D2>I1<72>I2 .
Sincex; andz, belong to different decision sets angd 2 € supgp) \ Rz, all sequences
connectingr; andx, through unlabeled data points pass through a region whirer €i)
the density is zero, or (ii) the density is positive. In ca}etiiere cannot exist a sequence
connectingz; andx, through unlabeled data points such that for any two consecut
pointsz;, z;+1 along the sequendg; — z;.1|| < 2V/dh,,, since the region of zero density

is at leasty| > 6v/dh,, wide. Thereforez; + x2, and hence; <7£> Zo. In case (i), since
x1 andz, belong to different decision sets, the marginal densiiy) jumps by at leagt,in,
one or more times along all sequences conneatir@ndz,. Suppose the first jump (in the
sequence) occurs where decisionBetnds and another decision $&¢t+# D begins. Then
sinceD, D' are at leasty| > 6v/dh,, wide, by Corollary 2 with probability> 1 — 1/m
for m > mg, for all sequences connecting andx, through unlabeled data points, there
exist pointsz, 2’ in the sequence that lie i \ Rz, D'\ R, respectively, andz — z'|| <

B log m. We will show thatp(z) — p(2’)| > pmin — O((hu log m)™2(1e1)) which using
Theorem 1 implies thap(z) — p(2')| > pmin — O((hy, log m)™nLe))y —2¢ > 5, for

m large enough. Hence, & z,.

11



To see these claims, observe that silé@ndD are adjacent decision sets/¥= NkX_, d;,
whered, € {Cy, C¢} andD’ = nK_, d}, thenTk, such thatly, = dj, forall k # ko. Thus,
{k:zeCyorz' € Cy} = ko. Since||z — 2| < hy, logm, we get:

K K
Ip(z) —p(2)| = Z axpr(z) — Z axpr(2’)
k=1 k=1

= > ar(pe(2) = () + D ar(pr(z) — pe(2))

kizeCy, Or 2/€Cy kiz,z' €Cy
> akg (pro (2) = oo NI = | DY an(pr(2) — pr(?))
k:z,z’€Cl
> ab—| D> ar(pr(z) = pi(z)

k:z,z'€Cy,

> Prin — €4 (R logm)™in(en)

)

wherec, > 0 is a constant. The fourth step follows sindg, # d;, and hence either
i, (2) IS zero orpg, (z') is zero, and sincey, is bounded from below by anda;, >
a. To see the last step, recall that the component dengitiese Holdera; smooth and
|2" — || < hm logm. Thus, we have:

Do ar(x) =) < > arlpr(z) — pr(?)]
k:z,z'€C, k:z,z'€Cy,
la] (5)
< Y a(mltorm + [S By
k:z,2' €Cy j=0 J:

< c4(hm logm)minthen),

wherecy = ¢4(K, k1,1, B) > 0 is a constant. Here the last step follows sincg;ifis
Holder«; smooth, then all its derivatives up e, ] are bounded.

Now sincez, z' € supfp) \ Rz, using Theorem 1, we get with probability 1 — 1/m,
for m > max(mq,ms)

P(2) — p(=")] P(2) = p(2) + p(2) — p(2) + p(z') — P(=")]

> |p(2) = p(2)] = B(2) — p(2)| — p(2") — B(2)]
> prmin — c4(ha logm)™inhen) —o¢
1
————= =0
- (log m)1/3

The last step holds for large enough> my = my(pmin, K, k1, d, a1, B, G, kg). Thus,
for case (ii) we have shown that,for > max(my, ms, m4) with probability> 1 — 1/m,

for all sequences connecting andz, through2v/dh.,,.-dense unlabeled data points, there
exists points, 2’ in the sequence such that — 2’| < h, logm but|p(z) — p(2’)| > dp.-
Thus,

1‘1ED,$2¢D:>$172>$2.

.$1,$QED:>$1<£>$2 .
SinceD has width at leagty| > 6v/dh.,, there exists a set of width 2v/dh.,, contained in
D\ Rp, and Corollary 2 implies that for. > ms3, with probability> 1 — 1/m, there exist

sequence(s) contained In\ R connectingz; andz, through2+v/dh,,,-dense unlabeled
data points. Since the sequence is containdd iriR 3, and the density o® is Holder«;

12



smooth, we have for all points 2’ in the sequence such that — 2’| < h., logm,

p(z) =p(")| = [p(2) = p(2) + p(2) — p(z') + p(2') — P(2))|
< [p(2) = p(2)| + Ip(2) — p(z)] + [p(z") = B(=)]
< 2em +p(2) — p(2)
< 2€m + 5(ha logm)™intan)
. 1

7 = O,

(log m)*/3

wherecs > 0 is a constant, and the last step holds for large enough> ms =
ms(K, k1,d, a1, B,G, k). The third step follow since, z’ € supfp) \ Rz, and in-
voking Theorem 1. To see the fourth step, siace’ € D, if z € C}, thenz’ € ¢} and
vice versa. Thus,

() =p() = | Y. arm(2) —pe@)| < D aklpr(z) = pr(2)]
k:z,z’€Cl k:z,z’€Cl
[ (J) )
< ar, | £1(hm logm)® Z (' —z2)

k:z,z'€Cy, 7=0
S CS(hm 1Ogm)min(1’a1),

wherecs = c5(k1, K, B, 1) > 0is aconstant. Here the third step follows sifjeé—z|| <
h logm, andpy is Holder«; on Ci. The last step follows since i, is Holder«;
smooth, then all its derivatives up fe; | are bounded. Thus, we have shown that

P
T1,x2 € D = 11 & 9.

Thus, the result of the Lemma holds for > my = max(mi,ms, ma, ms), Wheremg
mo(Pmin, K, k1, d, a1, B, G, ko) is a constant.

7.2 Proof of Corollary 1

Let 2; denote the event under which Lemma 1 holds. TRéRS) < 1/m, whereQ)® denotes the
complement of2. Let 2, denote the event that the test paiitand training dat&Xy, ..., X,, € £
don’tliein Rz. Then

P(Q5) <(n+1)P(Rp) < (n+ 1)pmaxVOl(Rz) = O(nhy,).
The last step can be explained as follows. Since the decimandaries are Lipschitz and is
finite, the length of the decision boundaries is a finite camistand hence voRg) = O(h,,,).

Now observe tha]fp,n essentially uses the clairvoyant knowledge of the decis&sD to dis-
cern which labeled pointXy, ..., X,, are in the same decision set&s Conditioning onQ2y, Q,

Lemma 1 implies thafX, X; € D ifand only if X & X, foralli = 1,...,n. Thus, we can
define a semi-supervised Iearnﬁ,ﬁ,n to be the same a,@D,n except that instead of using clair-
voyant knowledge of whethek, X; € D, fAmm is based on whetheX & X;. It follows that
Supp, () E[E (fm n)|Q1, Q2] =supp, . (1) E [S(fpyn)], and since the excess risk is bounded,

sup E[E(fnn)] = sup E[E(fumn)|Q, Qo] P(Q, Qa) + E[E(frnn)|Q5 U QSIP(Q5 U QS)
Pxv(7) Pxy (v)
—~ 1
< sup E[E(fpn)] +O (— + nhm)
Pxy (v) m

IN

ea(n) + 0 (% i <ﬁ>/> |
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7.3 Density Adaptive Regression Results
7.3.1 Semi-Supervised L earning Upper Bound

If the margin|y| > C,(m/(logm)?)~/?, whereC, = 6vdro andm > n??, we show
that the semi-supervised learner proposed in Section ®waehia finite sample error bound of
O ((n/logn)~—2/(d+22)) "Observe that the clarivoyant counterpartfpf,,(z) is given as

.]/C\D,n(x) = .]/[\D,n,m(x)a
where .
fD n,,m = arg ml Z 11,X1:€D + per(f/)

Observe thatfp ,, is a standard supervised learner that performs piecewigaqmial fit on each
decision seD € D, where the regression function is Holdeismooth. Lethp = %2?21 1x,ep
denote the number of labeled training examples that falldeasion seD € D. Since the regres-
sion function on each decision set is Holdesmooth, it follows (for example, along the lines of
Theorem 8 in [17]) that

2

E[(f*(X)—fp,n<x>>21XeD|nD1sc( no )

lognp

Now consider

E[(f*(X) — fou(X =) E[(s — fom(X))*1xep] P(D).

DeD

We will establish the result by taking expectation ovgs ~Binomial(n, P(D)) (if P(D) =
O(logn/n), we simply use the fact that the excess risk is bounded), amiréng over all deci-
sion sets recalling thaD| is a finite constant. Consider two cases:

28 logn
1. If P(D) > %loen,

E[(f*(X) = fp.n(X))*1xep]P(D)
= E[E[(f*(X) = Jp,n(X))*Lxen|np]|P(D)

2a
T dt2a
lognp
2a

P(D)

— lognp
n 2
n d+2a
<c (lgf’n) P(np)P(D)
npfo
o mP(D)/2]-1 n e
< — np,™*P(np)+ Y, np’ " P(np)| P(D)
(logn)~a*>e np=0 np=[nP(D)/2]
o i
< o [Pnp <nPD)/2) + (mP(D)/2)” = | P(D)
p e |
C [ 3nP(D) d
S o R (D) + 2 e (D)
Ogn d+2a L
< 70 l +on @it
~ (logn)~ @ [N
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The second last step follows since
P(np <nP(D)/2) P(nP(D)—np >nP(D)/2)

P (i P(D) —1x,ep = nP(D)/2>

= P <iZi > nP(D)/Q)
=1

(nP(D)/2) /2 _sury

= eXp{nP(D)(l —P(D)) —l—nP(D)/G} se '

The last step follows using Bernstein’s inequality sinaefp= P(D) — 1x,ep, we have
that|Z;| <1landvafZ;) = P(D)(1 — P(D)).

2. If P(D) < 222" e have

E[(f*(X) = fo.n(X))*Lxep]P(D) < 4M*P(D) =0 (logn> :

n

Thus, it follows that sincéD| < 2%

E[(f*(X) = fp.n(X))?] =0 (( " )) .

logn
And using Corollary 1,

E[(*(X) - fun(X))] = O ((1Zn>_ b lin (ﬁ)/d) .

If m > n2?, thenl/m + n(m/(logm)?)~*/4 = O((n/logn)~!) and we get an upper bound of
0 ((n/ log n)*%) on the performance of the semi-supervised learner.

If |y] < C,(m/(logm)?)~1/4, the decision sets are not discernable using unlabeledatata
the target regression function is piecewise Holdesmooth on each p-connected set. As shown
in [17], for piecewise Holderr functions, the proposed estimator achieves an error bodind o
max(n~2%/(2a+d)n"""y " Also notice that the number of resulting p-connected satsiot be
more than|D| since the procedure can miss detecting where the marginaltggumps, however
with high probability it will not declare two points to be mienected when the marginal density
does not jump between them. Thus, the number of p-conneetedssalso a finite constant. Using
similar analysis as above, an overall error bounchef (n 2/ (2a+d) p~1/d) follows, which scales
asn~ Y4 whend > 2a/(2a — 1).

7.3.2 Supervised Learning Lower Bound
Consider the single cluster claB%.,- with suppx) = [0, 1]¢. For this class, it is known [18] that
there exists a constaat> 0 such that
inf sup E[(f*(X) — fa(X))?] > en 20/ (0422,
fn Py
Notice thatP%,- C Pxv (v) for all . Therefore, we get:
inf sup E[(f*(X) = fu(X))?] > en~20/ (42,

fn Py (y)

If v < ¢,n=1/4, wherec, > 0 is a constant, we derive a tighter lower bound-of'/¢. Thus, we
will have

inf sup E[(f*(X) = fu(X))?] = en” /4,

In Pxy ()
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To establish the tighter lower bound @f~'/¢, we use the following theorem based on Assouad’s
lemma (adapted from Theorem 2.10 (iii) in [19]).

Theorem 2. Let$2 = {0, 1}9, the collection of binary vectors of lengh Let Py = {P*,w € Q}
be the corresponding collection @f probability measures associated with each vector. Also let
H(-,-) denote the Hellinger distance between two distributioms] &, -) denotes the Hamming

distance between two binary vectorsHE (P<', P¥) < k < 2,Vw,w’ € Q : p(w,w’) =1, then

inf max E,, [p(&, w)] > 3(1 — Vw1 — r/4))

O we

We will construct such a collection of joint probability digutions P, C Pxy(y) satisfy-
ing Theorem 2 withg = ¢?~', where/ = [csn'/?], ¢ > 0 is a constant. Notice that
E[(f*(X) — fu(X))?] = E[R(f*, f.)], whereR(f*, f,,) denotes the mean square error

R(f*, fn) = /(f*(w) — ful(2))?p(z)da.

Since the mean square error is not symmetric, we will firgttesit to a semi-distancg-, -) defined
as follows:

P (f, f) = / (F(2) = ful2))2de

For f* = f“ andf, = f¢, we will show that the mean square error and semi-distarecectated
as follows:

R(f, %) > b [d*(f, [2) — 4AM?). (2)
We will then show the following lower bound on the semi-dista in terms of the Hamming dis-
tance:
d(f°, 1) = ert ™ p(@,w) 3)

wherec; > 0 is a constant. Thus, we will have
inf sup E[(f*(X) — fa(X))’] inf sup E[R(f", fn)]

" Pxy (7) In Pxy ()

> infsupE[R(f*, [*)] = inf sup By [R(f*, f*)]

1% Po “ we
> b <mf sup B[ (f%, )] - 4M%>
W oweN
> b <C7€‘d inf sup B, [p(w, ©)] — 4M27)
W oweN
> b (c%fdg(l — Vel —K/4)) — 4M27)

> b (1(1 — Vel —k/4)) — 4M200) n~1/d
266
where the last step follows singe= (4=, ¢ = [cgn'/?] andy < c,n~ /9. Thus, there exists

Co = Colcs, c7, M, k), for which we obtain the desired lower boundwi~—'/?, wherec > 0 is a
constant.

We now construcP, C Pxy () along the lines of standard minimax construction that Basis
Theorem 2 withy = (%=1, ¢ = [cgn'/¢], and Equations. (2) and (3). We construct the elements
(p”, f«) of our collection as follows. Let = (&, x4) € [0, 1]¢, wherei € [0,1]~! andz, € [0, 1].
Define ~
. Jj—1)2 Lo
T3 =" and 7;(7) = ?Q(Z(:v - 3))
wherej € {1,...,¢}% " and¢ > 0is a Lipschitz function with Lipschitz constahtand supf) =
(—1/2,1/2)?1. Now define

gw(‘%) = Z wjnj(‘%)

Je{1,...e331
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e

(@) (b) ()

Figure 3: Examples of two sets of marginal density functipng*’ for (a)y < 0, (b)~y > 0 and
regression functiong®, f“" used for minimax construction.

Theng,,(-) is a Lipschitz function with Lipschitz constaht Now define forw € Q
p(x) = apf(z) + (1 —a)ps(z),

wherea < 1/2, p¢ (z) is uniform and supported ovely = {z € [0,1]? : 24 > £ + 3 + 9., (2) }
andp$ (z) is uniform and supported oveérs = {z € [0,1]? : x4 < 1 — J + g.,(2)}. Therefore,
the margin is equal te. And

w apf (x)ma () + (1 — a)p§ (x)ms (x)
fox) = (@) Lipe @20y = M pe@)=0}
wherem;(z) = M andmq(xz) = —M. LetY be continuous and bounded, and also assume that

Py (YX =2),p5(Y|X = 2z) < W, whereWW > 0 is a constant. This implies that

apt (2)pk (VIX = 2) + (1 aps (2§ (VX =) _ 2BW _ prussW
pw (:E) N ab Pmin

PrYIX =x)=

Figure 3 shows examples of two marginal density functjsh*" for positive and negative margin,

and corresponding regression functigfits <.

Notice that the component densities are supported on canquemected sets, are Holdersmooth

for any«, and are bounded from above and belowby 1 andB > 4. To see the latter, notice that
. 1 1 1

pi(@) = vol(C%)

_ w

1
ST @i Y T w6y T T 1 Ja@d

The lower bound follows since v@’), vol(Cy) < 1, and the upper bound follows since

1 1 0o L _
vol(CY) = vol(CY) = 5 — % — /gw(i)di >3- %n 1/d _ !chln 1d > 1/4.

Here the second last step follows since

o\ g~ - - - 1 _ L -
Joswaa= X wonl@) < L = gt < G
- Ce
ie{1,... 0pd-1

17



and the last step holds far = n(c,, cs,d, L, ||C||1) large enough. Further, the support sets of the
component densities have Lipschitz boundaries with Lifgaaonstantl.. The component regres-
sion functions are uniformly bounded betweed/ and M, and are Holderr smooth for anyo.
ThusPq, C ny('y).

We first establish (2).
RGP = [0 - P @) e
> b [ [ - f“<x>>21{pw<m>¢0}dx}

Y

| [ - F@ra - [ - P@PL s
> bld(f7, f7) - 4M*]

Next, we establish (3). We will consider two cases:
If v >0,

P9 = /(f“(:c) — f(2))2dz

= A Z lw;—@zlz/ 17;(2)dz = 4AM2L|| |16~ p(&, w)
ie{1,... 0pa-1 [0,1]4-1

If v <0,

d2(fw’fw) _ /(fw(x) _ fw(l'))zdl'

Y

(1—a) a (1—a)
+ vol(cy) Vvol(c#) +

2M(1—a) 2M(1—a) 2
min ( vol(cy) vol(cy) ) )

vol(cy) vol(c#)

Y e-wP [ n@d
Tefl,.. a1 [0,1)2=

vol(C¥) vol(CF)
vol(C¥)’ vol(CY)

Y

2
4M?a? min ( ) L|[¢]1 0 p(w, @)

Y

2
a _ N
4M2ELHCH1€ dp(wvw)

The second step follows from the definition §f andp“, and the third step follows sinae <
1/2=1-a > aand since vdiC}) <vol(C¥) for all w € Q. To see the last step, observe that for
alw € Q,
vol(Cy) _ 3 =3 = Jgu(@)dd 35— [gu@ds _ 3Ll
1 —

1
> —.
vol(Cs) 3 —3+[9u(@)dE ~ 3 -3+ [gu(@)dE — L+ Ll ~ 4
Here the third step follows since> —1 and [ g.,(z)dz < L||¢||:¢~*, and the last step follows for
n = n(cg,d, L, ||C||;) large enough sincé= [csn'/?]. Therefore, for ally, we have
2
P(1*, %) 2 AMP T LI pleo, @) = erl~plw, &),
Thus, (3) is satisfied.
Now we only need to show that the condition of Theorem 2 is thet,is, H2(P*', P¥) < k < 2,
Yw,w' € Q: p(w,w’) = 1. Observe that

HQ(PWIva) = HQ(PWl({Xh}/l ?:1)7Pw({X17}/1 ?:1))

2 <1 = ﬁ (1 - HZ(PWI(X%Y;)W(X@K))»

i=1
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We now evaluate

H?(PY(X,,Y;), P*(X:,Y;))

[/ i) - VT

/\/p )p5 x (YilXo) \/px )0y x (Yil X0))?

Recall thatp“;|X(Y|X) < PmaxW/Pmin. Sincep(w,w’) = 1, let j denote the index for which
w; # w~ and without loss of generality, assume that= 1 andw~ = 0. Also letB; = {z: %€

(:c; Qé,x + %)} We will evaluate the Hellinger integral over 4 differengi@ens: (Here we use

+orFto denote that the top sign is for the case- 0 and bottom sign is for the case< 0)
First consider
Ay ={z:% € B;, 1/2+~/2<z4<1/2+7v/2+ g,(Z),
1/2F /2 < zg <min(1/2 F /2 + g.(2),1/2 £ 7/2)}

Slncep%(Xl)7p§(Xz) € [buB] andpt}d//‘X(Y;|Xz)7pL;/‘X(Y;|XZ) € [OupmaXW/pmin]y for this re-
gion, we bound the argument of the integral By, .x W/ pmin-

’ Y u.) u.) BpmaxW
| o Cop 1) - ok o X < et [ g

Ay Pmin
Bmax

< ZPmec Wy / n;d
pmll’l

2Bpmax —

— 2wV g e

2BpmaxWL||<||1 -1
—d n
Pmin (206)

Forxz ¢ Aj, notice tha‘;v“;"x(mXi) = p;‘x(mXi) < PmaxW/Pmin, therefore we have:

[ RGO X = i (Km0

= M s (\/P“;?/(Xi)— \/P“;Q(Xi))Q

pmln

We now evaluate the latter integral over three regions: ietioat, we set up some results that will
be used in all these cases.

, , L
VoI(CE) ~ vol(C5 ). vol(C5) ~vol(C5 )] < [ s = LI¢]ae~ < (Q'f');nl,
: 6

Also, we establish that
vol(C¥), vol(C¥"), vol(C$), vol (CY) > 1/4.

For this, observe that for = n(c,, cs, d, L, ||C||1) large enough

, . L _
voI(Cf)ZVOI(C;’)zl/Q—y/Q—/ W(E) > 1/2 — 62 1/d _ !CHln Y >1/4
Ce

Vol(C) 2 vol(Cs) = 1/2 = 7/2+ [ @) = 1/2 = Fn /i 2 1/

We are now ready to consider the three regions:

As i ={x:2q>1/2+7/24 g, (2)}
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Notice that

/Az <\/p°§<'(

Xi) - \/péé(Xi))Q

a

(cy

/(\/vmcw _\/vol ))2

The second step follows sin@e< /1/vol(CY") + /1/vol(CY).

Notice that

/A3 (\/pfié(

2
X0 - s (x0)

a 1 2
= 1/ (vo ! voI(Ow))
_ <|vol Cr) —vol(Ct >|>2 IR,
- vol(C¥" )vol(Cy) = (2c6)?
Ay ={x: 240 <1/2Fv/2+ g (2)}
- 1—a 1—a ’
/AS vol(Cy") |/ vol(C¥)
1—a 1 1)
= T/AB (voI(Cg”) a voI(C;’))
<1 <|vol<c;> —vol<c;’>|>2 L2l
= 4 Ja, L vol(CY)vol(CY) = (2c6)%

The second step follows sin@e< /1/vol(Cy") + /1/voI(CY).

Ay={x:2 ¢ B;
T e 35
If v > 0, Notice that

[, (Vxd

If v <0, then

/A4 (\/p%(XZ) - \/pgé(Xi))

<

<

<

<

1/2F /2 + 9u(%) < 24 < 1/2£7/2 + 9. (7),
min(1/2F /2 + gu(2),1/2 £ 7/2) <wa <1/2+7/2}

1
4

-t -

vol(C¥")vol(C¥)

1—2

e

6)%

The second step follows sinee< \/
Therefore, we get that

H?*(P¥(X,,Y;), P*(X:,Y;))

l—a

a
vol(cs")

IN

+ vol(_c;’) + \/vol(clw) + vol(cy)”

2BpmaxWL”<”1n71 pmaxWLQHCH%an

+ 24
pmin(266)d pmin(206)2d
4BpmaxWL||<||1 -1 _. -1
— g =icsn
pmin(206)

20

vol(C¥")vol(CY)

- /A <\/vo|(ac;v’) * voll(;;’) - \/vol((lOi“) + v;(_c;)
i/ (vol ) voll(;;’) a vol(aCf) a vé|(_c;)>2
% / ( vol(Cy") vol(acw) voll(_C;/) a V;I(_CZJ)
/ <|vol cw) —vol(C¥)|  [vol(C¥) — vol(Cy")|
L I¢IIF

)

>2

2

y



where the second step holds foe= n(cﬁ, d, L, ||C||1) large enough. Ands > 0 is a constant.
2/ pw pw cs __1\" —cg/2 .
< — - = < - 8 =:
H*(P*,P*) 2(1 ( 2n )) 2(1—e )=k

where the second step holds foe= n(cs) large enough. Thus, the conditions of Theorem 2 are met
and we have established the desired lower bounds for seerigarning.
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