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Abstract

Empirical evidence shows that in favorable situationssemi-supervisedlearning
(SSL) algorithms can capitalize on the abundance ofunlabeledtraining data to
improve the performance of a learning task, in the sense thatfewer labeledtrain-
ing data are needed to achieve a target error bound. However,in other situations
unlabeled data do not seem to help. Recent attempts at theoretically character-
izing SSL gains only provide a partial and sometimes apparently conflicting ex-
planations of whether, and to what extent, unlabeled data can help. In this paper,
we attempt to bridge the gap between the practice and theory of semi-supervised
learning. We develop a finite sample analysis that characterizes the value of un-
labeled data and quantifies the performance improvement of SSL compared to
supervised learning. We show that there are large classes ofproblems for which
SSL can significantly outperform supervised learning, in finite sample regimes
and sometimes also in terms of error convergence rates.

1 Introduction

Labeled training data can be expensive, time-consuming anddifficult to obtain in many applications.
For example, hand-written character or speech recognitionand document classification require an
experienced human annotator, or in some applications each label might be the outcome of a spe-
cially designed experiment. Semi-supervised learning (SSL) aims to capitalize on the abundance
of unlabeled training data to improve learning performance. A thorough survey of semi-supervised
learning literature is available in [1]. Empirical evidence suggests that in certain favorable situations
unlabeled data can help, while in other situations it does not. As a result, there have been several
recent attempts [2, 3, 4, 5, 6, 7] at developing a theoreticalunderstanding of semi-supervised learn-
ing. It is well-accepted that unlabeled data can help only ifthere exists alink between the marginal
data distribution and the target function to be learnt. Two common types of links considered are the
cluster assumption [8, 4, 5] which states that the target function is locally smooth over subsets of the
feature space delineated by some property of the marginal density (but may not be globally smooth),
and the manifold assumption [5, 7] which assumes that the target function lies on a low-dimensional
manifold. In the cluster case, knowledge of these sets reduces the problem of estimating an inhomo-
geneous function to a homogeneous function, and in the manifold case, knowledge of the manifold
reduces a high-dimensional problem to a low-dimensional problem. Thus, knowledge of these sets
which can be gleaned from unlabeled data, simplify the learning task. However, recent attempts
at characterizing the amount of improvement possible underthese links only provide a partial and
sometimes apparently conflicting (for example, [5] vs. [7])explanations of whether or not, and to
what extent semi-supervised learning helps. In this paper,we bridge the gap between these seem-
ingly conflicting views and develop a minimax framework based on finite sample bounds to identify

1



situations in which unlabeled data help to improve learning. Our results quantify both the amount
of improvement possible using SSL as well as the the relativevalue of unlabeled data.

In this work, we focus on learning under the cluster assumption. We formalize this assumption in the
next section and go on to establish that there exist nonparametric classes of distributions, denoted
PXY , for which the decision sets (over which the target functionis smooth) are discernable from un-
labeled data. Moreover, we show that there existclairvoyantsupervised learners that, given perfect
knowledge of the decision sets denoted byD, can significantly outperform any generic supervised
learnerfn based on then labeled samples in these classes. That is, ifR denotes a risk of interest,
f̂D,n denotes the clairvoyant supervised learner, andE denotes expectation with respect to training
data, thensupPXY

E[R(f̂D,n)] < inffn supPXY
E[R(fn)]. This would imply that knowledge of

the decision sets simplifies the supervised learning task. Based on this, we establish that there also
exist semi-supervised learners, denotedf̂m,n, that usem unlabeled examples in addition to then

labeled examples in order to estimate the decision sets, which perform as well aŝfD,n, provided that
m grows appropriately relative ton. Specifically, if the error bound for̂fD,n decays polynomially
(exponentially) inn, then the number of unlabeled datam needs to grow polynomially (exponen-
tially) with the number of labeled datan. We provide general results for a broad range of learning
problems using finite sample error bounds. Then we consider regression problems in detail, and
examine a concrete instantiation of these general results by deriving minimax lower bounds on the
performance of any supervised learner and compare that to upper bounds on the errors of̂fD,n and
f̂m,n.

In their seminal papers, Castelli and Cover [9, 10] had suggested that, in the binary classification
setting, the marginal distribution can be viewed as a mixture of class conditional distributions:

PX(x) = aP (x|Y = 1) + (1 − a)P (x|Y = 0),

wherea = P (Y = 1). If this mixture is identifiable, that is, learningPX is sufficient to resolve
the component distributions, then the classification problem reduces to a simple hypothesis testing
problem of deciding the label (0/1) for each component. For hypothesis testing problems, the error
converges exponentially fast in the number of labeled examples, whereas the error convergence is
typically polynomial for classification. The ideas in this paper are similar, except that we do not
require identifiability of the mixture component densities, and show that it suffices to only approxi-
mately learn the decision sets over which the label is smooth. More recent attempts at theoretically
characterizing SSL have been relatively pessimistic. Rigollet [4] establishes that for a fixed collec-
tion of distributions satisfying a cluster assumption, unlabeled data do not provide an improvement in
convergence rate. A similar argument was made by Lafferty and Wasserman [5], based on the work
of Bickel and Li [11], for the manifold case. However, in a recent paper, Niyogi [7] gives a construc-
tive example of a class of distributions supported on a manifold whose complexity increases with the
number of labeled examples, and he shows a lower bound ofΩ(1) for any supervised learner (that
is, the error of any supervised learner is bounded from belowby a constant), whereas there exists a
semi-supervised learner that can provide an error bound ofO(n−1/2), assuming infinite unlabeled
data. We bridge the gap between these seemingly conflicting views. Our arguments can be under-
stood by the simple example shown in Fig. 1, where the distribution is supported on two components
separated by a marginγ and the target function is smooth over each component. Givena finite sam-
ple of data, these density sets may or may not be discernable depending on the sampling density
(see Fig. 1(b), (c)). Ifγ is fixed (this is similar to fixing the class of cluster-based distributions in [4]
or the manifold in [5, 11]), then given enough labeled data a supervised learner can achieve optimal
performance (since, eventually, it operates in regime (c) of Fig. 1) and unlabeled data may not help.
Thus, in this example, there is no improvement due to unlabeled data in terms of the rate of error
convergence for a fixed collection of distributions. However, since the underlying true separation
between the components is unknown, given a finite sample of data, there always exists a distribution
for which these density sets are indiscernible (e.g.,γ → 0). This perspective is similar in spirit to the
argument in [7]. We claim that meaningful characterizations of SSL performance and quantifications
of the value of unlabeled data require finite sample error bounds, and that rates of convergence and
asymptotic analysis may not capture the distinctions between SSL and supervised learning. Simply
stated, if the component density sets are discernable from afinite sample sizem of unlabeled data
but not from a finite sample sizen < m of labeled data, then SSL can provide better performance
than supervised learning. Further, we also show that there are certain plausible situations in which
SSL yields rates of convergence that cannot be achieved by any supervised learner.
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(a) (b) (c)

Figure 1: (a) Two separated high density sets with differentlabels that (b) cannot be discerned if the
sample size is too small, but (c) can be estimated if sample density is high enough.

The rest of this paper is organized as follows. In the next section, we describe a mathematical
model for the cluster assumption. Section 3 describes a procedure for learning the decision sets
using unlabeled data. Our main result characterizing the relative performance of supervised and
semi-supervised learning is presented in Section 4, and Section 5 applies the result to the regression
problem. Conclusions are discussed in Section 6, and proofsare deferred to Section 7.

2 Characterization of model distributions under the cluster assumption

In this section, we describe a mathematical model for the cluster assumption. We define the col-
lection of joint distributionsPXY (γ) = PX × PY |X indexed by a margin parameterγ as follows.
Let X, Y be bounded random variables with marginal distributionPX ∈ PX and conditional label
distributionPY |X ∈ PY |X , supported on the domainX = [0, 1]d.

The marginal densityp(x) =
∑K

k=1 akpk(x) is the mixture of a finite, but unknown, number of
component densities{pk}K

k=1, whereK < ∞. Here the unknown mixing proportionsak ≥ a > 0

and
∑K

k=1 ak = 1. In addition, we place the following assumptions on the mixture component
densities{pk}K

k=1:

1. pk is supported on a unique compact, connected setCk ⊆ X with Lipschitz boundaries.
Specifically, we assume the following form for the componentsupport sets:

Ck = {x ≡ (x1, . . . , xd) ∈ X : g
(1)
k (x1, . . . , xd−1) ≤ xd ≤ g

(2)
k (x1, . . . , xd−1)},

whereg
(1)
k (·), g(2)

k (·) ared − 1 dimensional Lipschitz boundary functions with Lipschitz
constantL. See Figure 2 for an illustrative example withd = 2.
This form is a slight generalization of the boundary fragment class of sets which is used as
a common tool for analysis of learning problems [12]. Boundary fragment sets capture the
salient characteristics of more general decision sets since, locally, the boundaries of general
sets are like fragments in a certain orientation.

2. pk is bounded from above and below,0 < b ≤ pk ≤ B.

3. pk is Hölder-α1 smooth onCk with Hölder constantκ1. Formally,pk has continuous partial
derivatives of up to order[α1], where[α1] denotes the maximal integer that is< α1, and
∃δ > 0 such that

∀z, x ∈ Ck : ||z − x|| ≤ δ ⇒ |pk(z) − TPx(z, [α1])| ≤ κ1‖z − x‖α1

whereκ1, α1 > 0, TPx(·, [α1]) denotes the degree[α1] Taylor polynomial approximation
of pk expanded aroundx, and|| · || denotes Euclidean norm.

Let the conditional label density on each componentCk be denoted bypk(Y |X = x). Thus, a
labeled training point(X, Y ) is obtained as follows. With probabilityak, X is drawn frompk and
Y is drawn frompk(Y |X = x). In the supervised setting, we assume access ton labeled training
dataL = {Xi, Yi}n

i=1 drawn i.i.d according toPXY ∈ PXY (γ), and in the semi-supervised setting,
we assume access tom additional unlabeled training dataU = {Xi}m

i=1 drawn i.i.d according to
PX ∈ PX .
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Figure 2: The marginγ measures the minimal width of a decision set, or separation between support
sets of the marginal mixture component densities. The margin is positive if there is no overlap
between the component support sets, and negative otherwise.

Let D denote the collection of all non-empty sets obtained as intersections of{Ck}K
k=1 or their

complements{Cc
k}K

k=1, excluding the set∩K
k=1C

c
k that does not lie in the support of the marginal

density. Observe that|D| ≤ 2K , and in practical situations the cardinality ofD is much smaller
as only a few of the sets are non-empty. The cluster assumption is that the target function will be
smooth on each setD ∈ D, hence the sets inD are calleddecision sets. At this point, we do not
consider a specific target function; in Section 5, we will specify the smoothness assumptions on the
target function in the regression setting.

The collectionPXY is indexed by a margin parameterγ, which denotes the minimum width of
a decision set or separation between the component support setsCk. The marginγ is assigned a
positive sign if there is no overlap between components, otherwise it is assigned a negative sign as
illustrated in Figure 2. Formally, forj, k ∈ {1, . . . , K}, let

djk := minp,q∈{1,2} ‖g(p)
j − g

(q)
k ‖∞ j 6= k,

dkk := ‖g(1)
k − g

(2)
k ‖∞,

where‖ · ‖∞ denotes the sup-norm, and

σ =

{
1 if Cj ∩ Ck = ∅ ∀j 6= k, wherej, k ∈ {1, . . . , K}
−1 otherwise

Then the margin is defined as
γ = σ · min

j,k∈{1,...,K}
djk.

3 Learning Decision Sets

Ideally, we would like to break a given learning task into separate subproblems on eachD ∈ D,
since the cluster assumption is that the target function is smooth on each decision set. In the section,
we show that the decision sets are learnable using unlabeleddata. Note that the marginal densityp
is smooth within each decision setD ∈ D, but exhibits jumps at the decision boundaries since the
component marginal mixture densities are bounded away fromzero. Hence, the collectionD can be
learnt by estimating the marginal density from unlabeled data as follows:

1) Marginal density estimation— The procedure is based on the sup-norm kernel density estimator
proposed in [13]. Consider a uniform square grid over the domainX = [0, 1]d with spacing2hm,
wherehm = κ0 ((log m)2/m)1/d andκ0 > 0 is a constant. For any pointx ∈ X , let x̄ denote the
closest point on the grid. LetG denote the kernel andHm = hmI, then the estimator ofp(x) is

p̂(x) =
1

mhd
m

m∑

i=1

G(H−1
m (Xi − x̄)).
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2) Decision set estimation— Two pointsx1, x2 ∈ X are said to beconnected, denoted byx1 ↔ x2,
if there exists a sequence of pointsx1 = z1, z2, . . . , zl−1, zl = x2 such thatz2, . . . , zl−1 ∈ U ,
‖zj − zj+1‖ ≤ 2

√
dhm. That is, there exists a sequence of2

√
dhm-dense unlabeled data points

betweenx1 andx2. Two pointsx1, x2 ∈ X are said to bep-connectedif in addition to being
connected, the sequence is such that for all points that satisfy ‖zi − zj‖ ≤ hm log m, |p̂(zi) −
p̂(zj)| ≤ δm := (log m)−1/3. That is, there exists a sequence of2

√
dhm-dense unlabeled data

points betweenx1 andx2 such that the marginal density varies smoothly along the sequence. All
points that are pairwise p-connected specify an empirical decision set. This decision set estimation
procedure is similar in spirit to the semi-supervised learning algorithm proposed in [14]. In practice,
p-connectedness only need to be evaluated for the test pointX and the training points with labels,
that is{Xi}n

i=1 ∈ L.

The following lemma shows that if the margin is large relative to the average spacing between
unlabeled data points (m−1/d), then with high probability, two points are p-connected (lie in the
same empirical decision set) if and only if they lie in the same decision setD ∈ D, provided the
points are not too close to the decision boundaries.

Lemma 1. Denote the set of boundary points as

B := {z : zd = g
(p)
k (z1, . . . , zd−1), k ∈ {1, . . . , K}, p ∈ {1, 2}}

and define the boundary set as

RB := {x : inf
z∈B

‖x − z‖ ≤ 2
√

dhm}.

If |γ| > Co(m/(log m)2)−1/d, whereCo = 6
√

dκ0, then for all p ∈ PX , all pairs of points
x1, x2 ∈ supp(p) \ RB and allD ∈ D, with probability> 1 − 1/m,

x1
p↔ x2 if and only if x1, x2 ∈ D,

for large enoughm ≥ m0 ≡ m0(pmin, K, κ1, d, α1, B, G, κ0).1

The proof is given in Section 7.1.

Remark: If we are only concerned with distributions that have a positive margin, then only connect-
edness is needed to identify the decision sets. In fact, for the positive margin case, the decision sets
correspond to connected components of the support set, and Hausdorff accurate support set estima-
tion proposed in [15] (also see [16]) can be used to estimate the decision sets instead of identifying
connecting sequences. One advantage of using Hausdorff accurate support set estimation over con-
necting sequences is that we can also handle densities that do not jump (are not bounded away from
zero) but transition gradually to zero. However, in the negative margin case p-connectedness is
needed since the supports of the mixture constituents in this case are overlapping and the decision
sets are characterized by a sharp transition in the density.

4 SSL Performance and the Value of Unlabeled Data

We now state our main result that characterizes the performance of SSL relative to a clairvoyant
supervised learner (with perfect knowledge of the decisionsets), and follows as a corollary to the
lemma stated above. LetR(f) denote a risk of interest for a learnerf and the excess riskE(f) =
R(f) − R∗, whereR∗ is the infimum risk over all possible learners. The risk is given by the
probability of errorPXY (f(X) 6= Y ) for classification and the mean square errorEXY [(f(X) −
Y )2] for regression.

Corollary 1. Assume that the excess riskE is bounded. Suppose there exists a clairvoyant super-
vised learnerf̂D,n, with perfect knowledge of the decision setsD, for which the following finite
sample upper bound holds

sup
PXY (γ)

E[E(f̂D,n)] ≤ ǫ2(n).

1Dependence of a constant onG implies the constant depends on a norm or moment of the kernelG.
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Then there exists a semi-supervised learnerf̂m,n such that if|γ| > Co(m/(log m)2)−1/d, then

sup
PXY (γ)

E[E(f̂m,n)] ≤ ǫ2(n) + O

(
1

m
+ n

(
m

(log m)2

)−1/d
)

.

The proof is given in Section 7.2. This result captures the essence of the relative characterization of
semi-supervised and supervised learning for the margin based model distributions. It suggests that
if the setsD are discernable using unlabeled data (the margin is large enough compared to average
spacing between unlabeled data points), then there exists asemi-supervised learner that can perform
as well as a supervised learner with clairvoyant knowledge of the decision sets, providedm ≫ n,
so that(n/ǫ2(n))

d
= O(m/(log m)2) and the additonal term in the performance bound of the

semi-supervised learner is small compared toǫ2(n) . This implies that ifǫ2(n) decays polynomially
(exponentially) inn, thenm needs to grow polynomially (exponentially) inn.

Further, suppose that the following finite sample lower bound holds for any supervised learner based
onn labeled data:

inf
fn

sup
PXY (γ)

E[E(fn)] ≥ ǫ1(n).

If ǫ2(n) < ǫ1(n), then there exists a clairvoyant supervised learner with perfect knowledge of the
decision sets that outperforms any supervised learner thatdoes not have this knowledge. Hence,
Corollary 1 implies that SSL can provide better performancethan any supervised learner provided
(i) m ≫ n so that(n/ǫ2(n))

d
= O(m/(log m)2), and (ii) knowledge of the decision sets simplifies

the supervised learning task, so thatǫ2(n) < ǫ1(n). In the next section, we provide a concrete
application of this result in the regression setting. As a simple example in the binary classification
setting, ifp(x) is supported on two disjoint sets and ifP (Y = 1|X = x) is strictly greater than
1/2 on one set and strictly less than1/2 on the other (that is, the label is constant on each set),
then perfect knowledge of the decision sets reduces the problem to a hypothesis testing problem for
which ǫ2(n) = O(e−C n), for some constantC > 0. However, ifγ is small relative to the average
spacingn−1/d between labeled data points, thenǫ1(n) = c n−1/d wherec > 0 is a constant. This
is because in this case the decision set boundaries can only be localized to an accuracy ofn−1/d,
the average spacing between labeled data points. Since the boundaries are Lipschitz, the expected
volume that is incorrectly assigned to any decision set is greater thanc n−1/d, wherec > 0 is a
constant. This implies that the overall expected excess risk is greater thanc n−1/d. A formal proof
for the lower bound can be derived along the lines of the minimax lower bound proof for regression
in the next section. Thus, an exponential improvement is possible using semi-supervised learning
provided the number of unlabeled data examplesm grows exponentially inn, the number of labeled
data examples. In other words, to obtain the same performance bound as a supervised learner with
n labeled examples, a semi-supervised learner only needsn′ ≡ log n labeled examples in the binary
classification setting, and the numberm of unlabeled examples needed is exponential inn′, that is,
polynomial inn.

5 Density-adaptive Regression

Let Y denote a continuous and bounded random variable. Under squared error loss, the optimal
decision rulef∗(x) = E[Y |X = x], and the excess riskE(f) = E[(f(X) − f∗(X))2]. Recall that
pk(Y |X = x) is the conditional density on thek-th component and letEk denote expectation with
respect to the corresponding conditional distribution. The regression function on each component is
fk(x) = Ek[Y |X = x] and we assume that fork = 1, . . . , K

1. fk is uniformly bounded,|fk| ≤ M .

2. fk is Hölder-α2 smooth onCk with Hölder constantκ2.

This implies that the overall regression functionf∗(x), given as

f∗(x) =

K∑

k=1

akpk(x)
∑K

j=1 ajpj(x)
fk(x),
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Margin range SSL upper bound SL lower bound SSL helps
γ ǫ2(n) ǫ1(n)

γ ≥ γ0 n−2α/(2α+d) n−2α/(2α+d) No
γ ≥ con

−1/d n−2α/(2α+d) n−2α/(2α+d) No
con

−1/d > γ ≥ Co(
m

(log m)2 )−1/d n−2α/(2α+d) n−1/d Yes

Co(
m

(log m)2 )−1/d > γ ≥ −Co(
m

(log m)2 )−1/d n−1/d n−1/d No

−Co(
m

(log m)2 )−1/d > γ n−2α/(2α+d) n−1/d Yes

−γ0 > γ n−2α/(2α+d) n−1/d Yes

Table 1: Comparison of finite sample lower bounds on the mean square error for supervised learning,
with finite sample upper bounds on the mean square error for semi-supervised learning, for the
margin based model distributions. These bounds hold form ≫ n2d andd ≥ 2α/(2α − 1), and
suppress constants and log factors.

is piecewise Hölder-α smooth, whereα = min(α1, α2). That is,f∗ is Hölder-α smooth on each
D ∈ D, except possibly at the decision boundaries. Since a Hölder-α smooth function can be locally
well-approximated by a Taylor polynomial, we propose the following semi-supervised learner that
performs local polynomial fits within each empirical decision set, that is, using labeled training data
that are p-connected as per the definition in Section 3. Whilea spatially uniform estimator suffices
to estimate a Hölder-α smooth function, we use the following spatially adaptive estimator proposed
in Section 4.1 of [17] which is shown to yield minimax optimalperformance for piecewise-smooth
functions. This ensures that when the decision sets are indiscernible using unlabeled data, the semi-
supervised learner still achieves an error bound that is, upto logarithmic factors, no worse than the
minimax lower bound for supervised learners.

f̂m,n,x(·) = arg min
f ′∈Γ

n∑

i=1

(Yi − f ′(Xi))
2
1

x
p
↔Xi

+ pen(f ′)

and
f̂m,n(x) ≡ f̂m,n,x(x).

Here Γ denotes a collection of piecewise polynomials with quantized coefficients of degree[α]
(the maximal integer< α), defined over recursive dyadic partitions of the domainX = [0, 1]d

with cells of sidelength between2−⌈log(n/ log n)/(2α+d)⌉ and2−⌈log(n/ log n)/d⌉ (see [17] for details).
The penalty term pen(f ′) is proportional tolog(

∑n
i=1 1

x
p
↔Xi

) · #f ′, where
∑n

i=1 1
x

p
↔Xi

simply
denotes the number of labeled training data that are p-connected tox, that is are in the same em-
pirical decision set asx, and#f ′ denotes the number of cells in the recursive dyadic partition
on whichf ′ is defined. It is shown in [17] that, under the Hölder-α assumption, this estimator
obeys a finite sample error bound ofn−2α/(2α+d), ignoring a logarithmic factor. Also, it is shown
that for piecewise Hölder-α smooth functions, this estimator yields a finite sample error bound of
max(n−2α/(2α+d), n−1/d), ignoring a logarithmic factor.

Using these results from [17] and Corollary 1, in Section 7.3.1, we derive finite sample upper bounds
on the mean square excess risk of the semi-supervised learner (SSL) described above. Also, we de-
rive finite sample minimax lower bounds on the performance ofany supervised learner (SL) based
onn labeled examples in Section 7.3.2. Our results are summarized in Table 1, for model distribu-
tions characterized by various values of the margin parameterγ. In the table, we suppress constants
and log factors in the error bounds, and assume thatm ≫ n2d so that the performance bound on
the semi-supervised learner given in Corollary 1 essentially scales asǫ2(n). The constantsco and
Co characterizing the margin only depend on the fixed parameters of the classPXY (γ). Also, γ0

denotes a constant, and thus the casesγ ≥ γ0 and−γ0 > γ correspond to considering a fixed
collection of distributions (whose complexity does not change with the amount of data).

Consider the case when the dimension is large or the target function is smooth enough so that
d ≥ 2α/(2α − 1). If d < 2α/(2α − 1), then the supervised learning error incurred by averaging
across decision sets (which behaves liken−1/d) is smaller than error incurred in estimating the target
function away from the boundaries (which behaves liken−2α/(2α+d)). Thus, whend < 2α/(2α −
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1), learning the decision sets does not simplify the supervised learning task, and there appears to
be no benefit to using a semi-supervised learner. So focusingon the case whend ≥ 2α/(2α − 1),
the results of Table 1 state that if the marginγ is large relative to the average spacing between
labeled data pointsn−1/d, then a supervised learner can discern the decision sets accurately and
SSL provides no gain. Whenγ ≥ γ0, we consider a fixed collection of distributions, and this
argument is similar in spirit to the argument made by Lafferty and Wasserman [5]. However, if
γ > 0 is small relative ton−1/d, but large with respect to the spacing between unlabeled data points
m−1/d, then the proposed semi-supervised learner provides improved error bounds compared to
any supervised learner. This is similar in spirit to the argument made by Niyogi [7] that the true
underlying distribution can be more complex than can be discerned using labeled data. If|γ| is
smaller thanm−1/d, the decision sets are not discernable even with unlabeled data and SSL provides
no gain. However, notice that the performance of the semi-supervised learner is no worse than the
minimax lower bound for supervised learners since we chose an estimator that is also optimal for
piecewise smooth functions (recall that the overall targetfunction is piecewise smooth). In the
γ < 0 case, when the component support sets can overlap, if the magnitude of the margin|γ| larger
thanm−1/d, then the semi-supervised learner can discern the decisionsets and achieves smaller
error bounds (n−2α/(2α+d)), whereas these sets cannot be as accurately discerned by any supervised
learner. For the overlap case (γ < 0), the supervised learners are always limited by the error incurred
due to not resolving the decision sets(n−1/d). In particular, for the fixed collection of distributions
with γ < −γ0, a faster rate of error convergence is attained by SSL compared to SL, provided
m ≫ n2d.

6 Concluding Remarks

In this paper, we develop a framework for evaluating the performance gains possible with semi-
supervised learning under a cluster assumption using finitesample error bounds. The theoretical
characterization we present explains why in certain situations unlabeled data can help to improve
learning, while in other situations they may not. We demonstrate that there exist general situations
under which semi-supervised learning can be significantly superior to supervised learning, in terms
of achieving smaller finite sample error bounds than any supervised learner, and sometimes in terms
of a better rate of error convergence. Moreover, our resultsalso provide a quantification of the
relative value of unlabeled to labeled data.

While we focus on the cluster assumption in this paper, we conjecture that similar techniques can
be applied to quantify the performance of semi-supervised learning under the manifold assumption
as well. In the manifold case, the curvature and how close themanifold can get to itself or another
manifold will play the role that the margin plays under the cluster assumption. In particular, we be-
lieve that the use of minimax lower bounding techniques is essential because many of the interesting
distinctions between supervised and semi-supervised learning occur only in finite sample regimes,
and rates of convergence and asymptotic analysis may not capture the complete picture.

In this work, we also show that though semi-supervised learning simplifies the learning task when
the link relating the marginal and conditional distributions holds, it is possible to ensure that the
performance of the semi-supervised learning does not deteriorate when the link is not discernable
using unlabeled data or does not hold. For example, when the margin is small relative to the spacing
between unlabeled data, the decision sets cannot be identified using unlabeled data, however by
employing a more sophisticated tool (a learner that has optimal performance for piecewise smooth
functions) similar to what a supervised learning algorithmwould use, we ensured that the SSL
performance is no worse than what a supervised learner wouldachieve. In this sense, the semi-
supervised learner we propose is somewhat agnostic. However, if the number of decision sets can
grow with n, the semi-supervised learning algorithm can perform worsebecause it would break
the problem into a large collection of subproblems. Thus, itis of interest to develop an agnostic
procedure that can identify such situations.

7 Proofs

Since the component densities are bounded from below and above, definepmin := b mink ak ≤
p(x) ≤ B =: pmax.

8



7.1 Proof of Lemma 1

We present the proof in two steps - first, we establish some results about the proposed kernel density
estimator, and then using the density estimation results, we establish that the decision setsD can be
learnt based only on unlabeled data.

1) Density estimation:
Theorem 1. [Sup-norm density estimation of non-boundary points] Consider the kernel density
estimator proposed in Section 3̂p(x) = 1

mhd
m

∑m
i=1 G(H−1

m (Xi − x̄)), whereHm = hmI, hm =

κ0((log m)2/m)1/d, κ0 > 0 is a constant, and̄x denotes the point closest tox on a uniform grid
over the domainX = [0, 1]d with spacing2hm. Let the kernelG satisfy

supp(G) = [−1, 1]d, G ∈ (0, Gmax] and
∫

[−1,1]d
ujG(u)du =

{
1 j = 0
0 1 ≤ j ≤ [α1]

,

where supp(·) denotes the support of a function, then for allp ∈ PX , with probability at least
1 − 1/m,

sup
x∈supp(p)\RB

|p(x) − p̂(x)| ≤ c3

(
hmin(1,α1)

m +

√
log m

mhd
m

)
=: ǫm,

for m ≥ m1 ≡ m1(G, B), wherec3 ≡ c3(K, κ1, d, α1, B, G) > 0 is a constant. Notice thatǫm

decreases with increasingm.

Proof. Consider anyp ∈ PX . Sincep̂(x) = p̂(x̄),

sup
x∈supp(p)\RB

|p(x) − p̂(x)| ≤ sup
x∈supp(p)\RB

|p(x) − p(x̄)| + sup
x̄:x∈supp(p)\RB

|p(x̄) − p̂(x̄)| (1)

To bound the first term of (1), observe that sincex ∈ supp(p) \ RB and‖x − x̄‖ ≤
√

dhm, by
definition ofRB if x ∈ Ck thenx̄ ∈ Ck and vice versa. Thus, for allx ∈ supp(p) \ RB,

|p(x) − p(x̄)| =

∣∣∣∣∣

K∑

k=1

akpk(x) − akpk(x̄)

∣∣∣∣∣≤
K∑

k=1

ak |pk(x) − pk(x̄)|

=
∑

k:x,x̄∈Ck

ak|pk(x) − pk(x̄)|

≤
∑

k:x,x̄∈Ck

ak



κ1(
√

dhm)α1 +

∣∣∣∣∣∣

[α1]∑

j=1

p
(j)
k (x)

j!
(x̄ − x)j

∣∣∣∣∣∣





≤ c1 hmin(1,α1)
m ,

wherec1 ≡ c1(K, κ1, d, α1, B) > 0 is a constant. The last step follows since ifpk is Hölder-α1

smooth, then all its derivatives up to[α1] are bounded and‖x − x̄‖ ≤
√

dhm.

To bound the second term, notice that for allx̄ : x ∈ supp(p) \ RB,

|p(x̄) − p̂(x̄)| = |p(x̄) − E[p̂(x̄)]| + |E[p̂(x̄)] − p̂(x̄)|
We now bound the two terms in the last expression.

1. For allx̄ : x ∈ supp(p) \ RB, consider

|p(x̄) − E[p̂(x̄)]| =

∣∣∣∣∣p(x̄) − 1

hd
m

∫ x̄+hm

x̄−hm

G(H−1
m (y − x̄))p(y)dy

∣∣∣∣∣

Notice that given the conditions on the kernel,

p(x̄) =

∫

[−1,1]d

[α1]∑

j=0

p(j)(x̄)

j!
(hmu)jG(u)du

=
1

hd
m

∫ x̄+hm

x̄−hm

G(H−1
m (y − x̄))

[α1]∑

j=0

p(j)(x̄)

j!
(y − x̄)jdy

9



Therefore, we get

|p(x̄) − E[p̂(x̄)]|

=

∣∣∣∣∣∣
1

hd
m

∫ x̄+hm

x̄−hm

G(H−1
m (y − x̄))




[α1]∑

j=0

p(j)(x̄)

j!
(y − x̄)jdy − p(y)



 dy

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

hd
m

∫ x̄+hm

x̄−hm

G(H−1
m (y − x̄))

K∑

k=1

ak




[α1]∑

j=0

p
(j)
k (x̄)

j!
(y − x̄)jdy − pk(y)



 dy

∣∣∣∣∣∣

≤
∣∣∣∣∣

1

hd
m

∫ x̄+hm

x̄−hm

G(H−1
m (y − x̄))κ1‖y − x̄‖α1dy

∣∣∣∣∣

≤ κ1

(∫

[−1,1]d
‖u‖α1G(u)du

)
hα1

m = c2 hα1
m ,

wherec2 ≡ c2(κ1, G, α1) > 0 is a constant.

2. Now consider

P

(
sup

x̄:x∈supp(p)\RB

|E[p̂(x̄)] − p̂(x̄)| > ǫ

)
≤

∑

x̄

P (|E[p̂(x̄)] − p̂(x̄)| > ǫ)

=
∑

x̄

P

(∣∣∣∣∣

m∑

i=1

E[Zi] − Zi

∣∣∣∣∣ > mhd
mǫ

)

≤
∑

x̄

P

(
m∑

i=1

|E[Zi] − Zi| > mhd
mǫ

)

whereZi = G(H−1
m (Xi − x̄)). Now observe that|E[Zi] − Zi| ≤ Gmax and

var(Zi) ≤ E[Z2
i ] =

∫ x̄+hm

x̄−hm

G2(H−1
m (y − x̄))p(y)dy

= hd
m

∫

[−1,1]d
G2(u)p(x̄ + Hmu)du

= hd
m

∫

[−1,1]d
G2(u)(p(x̄) + o(1))du

≤ 2‖G‖2
2p(x̄)hd

m ≤ 2‖G‖2
2Bhd

m

Thus, using Bernstein’s inequality, we get:

P

(
m∑

i=1

|E[Zi] − Zi| > mhd
mǫ

)
≤ exp

{
− (mhd

mǫ)2/2

2‖G‖2
2Bmhd

m + Gmaxmhd
mǫ/3

}

Settingǫ = 4‖G‖2

√
B
√

log m
mhd

m
, and observing thatGmaxǫ/3 ≤ 2‖G‖2

2B for large enough

m ≥ m1 ≡ m1(G, B), we get:

P

(
sup

x̄:x∈supp(p)\RB

|E[p̂(x̄)] − p̂(x̄)| > 4‖G‖2

√
B

√
log m

mhd
m

)

≤
∑

x̄

exp

{
−16‖G‖2

2Bmhd
m log m/2

4‖G‖2
2Bmhd

m

}

≤ h−d
m exp {−2 logm}

≤ m · 1

m2
=

1

m

10



Therefore we get, with probability at least1 − 1/m, for m ≥ m1(G, B) we have the following
bound on the second term

sup
x̄:x∈supp(p)\RB

|p(x̄) − p̂(x̄)| ≤ c2h
α1
m + 4‖G‖2

√
B

√
log m

mhd
m

.

And putting the bounds on the two terms together: For allp ∈ PX , with probability at least1−1/m,
for m ≥ m1(G, B)

sup
x∈supp(p)\RB

|p(x) − p̂(x)| ≤ c3

(
hmin(1,α1)

m +

√
log m

mhd
m

)
,

wherec3 ≡ c3(K, κ1, d, α1, B, G) > 0 is a constant.

Remark: This bound can be tightened toO(hα1
m +

√
log m/mhd

m) by also estimating the
density derivatives at the grid points and definingp(x) as the Taylor polynomial approximation
expanded around the closest grid pointx̄, see [13]. Also, the arguments of the proof hold if
hm = κ0(log m/m)−1/(d+2α1). Hence, we recover the minimax rate ofO((m/ log m)−α1/(d+2α1)

for sup-norm density estimation of a Hölder-α1 smooth density. However, we want to characterize
the largest collection of distributions (smallest margin)that a semi-supervised learner can handle,
and thus we seek the smallesthm (which determines the smallest margin that can be handled) for
which the boundǫm decreases with increasingm.

Corollary 2. [Empirical density of unlabeled data] Under the conditions of Theorem 1, for all
p ∈ PX andm ≥ m3 ≡ m3(pmin, K, κ1, d, α1, B, G, κ0), with probability at least1 − 1/m, for
all x ∈ supp(p) \ RB, there exists an unlabeled data pointXi ∈ U such that‖Xi − x‖ ≤

√
dhm.

Proof. From Theorem 1, for allx ∈ supp(p) \ RB, for m ≥ m1(G, B)

p̂(x) ≥ p(x) − ǫm ≥ pmin − ǫm > 0

The last step follows for large enoughm ≥ m2 ≡ m2(pmin, K, κ1, d, α1, B, G, κ0) sinceǫm is
decreasing withm. This implies that

∑m
i=1 G(H−1

m (Xi − x)) > 0 for m ≥ m3 = max(m1, m2),
and therefore there exists an unlabeled data point within

√
dhm of x.

2) Decision set estimation - Using the density estimation results, we now show that if|γ| > 6
√

dhm,
then for allp ∈ PX , all pairs of pointsx1, x2 ∈ supp(p) \ RB and allD ∈ D, for m ≥ m0 ≡
m0(pmin, K, κ1, d, α1, B, G, κ0) with probability > 1 − 1/m, we havex1

p↔ x2 if and only if
x1, x2 ∈ D. We establish this in two steps:

1. x1 ∈ D, x2 6∈ D ⇒ x1 6 p↔ x2 :
Sincex1 andx2 belong to different decision sets andx1, x2 ∈ supp(p) \RB , all sequences
connectingx1 andx2 through unlabeled data points pass through a region where either (i)
the density is zero, or (ii) the density is positive. In case (i), there cannot exist a sequence
connectingx1 and x2 through unlabeled data points such that for any two consecutive
pointszj, zj+1 along the sequence‖zj − zj+1‖ ≤ 2

√
dhm since the region of zero density

is at least|γ| > 6
√

dhm wide. Therefore,x1 6↔ x2, and hencex1 6 p↔ x2. In case (ii), since
x1 andx2 belong to different decision sets, the marginal densityp(x) jumps by at leastpmin

one or more times along all sequences connectingx1 andx2. Suppose the first jump (in the
sequence) occurs where decision setD ends and another decision setD′ 6= D begins. Then
sinceD, D′ are at least|γ| > 6

√
dhm wide, by Corollary 2 with probability> 1 − 1/m

for m ≥ m3, for all sequences connectingx1 andx2 through unlabeled data points, there
exist pointsz, z′ in the sequence that lie inD \RB, D′ \RB, respectively, and‖z − z′‖ ≤
hm log m. We will show that|p(z)−p(z′)| ≥ pmin−O((hm log m)min(1,α1)) which using
Theorem 1 implies that|p̂(z) − p̂(z′)| ≥ pmin − O((hm log m)min(1,α1)) − 2ǫm > δm for
m large enough. Hencex1 6 p↔ x2.
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To see these claims, observe that sinceD′ andD are adjacent decision sets, ifD = ∩K
k=1dk

wheredk ∈ {Ck, Cc
k} andD′ = ∩K

k=1d
′
k, then∃k0 such thatdk = d′k for all k 6= k0. Thus,

{k : z ∈ Ck or z′ ∈ Ck} = k0. Since‖z − z′‖ ≤ hm log m, we get:

|p(z) − p(z′)| =

∣∣∣∣∣

K∑

k=1

akpk(z) −
K∑

k=1

akpk(z′)

∣∣∣∣∣

=

∣∣∣∣∣∣

∑

k:z∈Ck or z′∈Ck

ak(pk(z) − pk(z′)) +
∑

k:z,z′∈Ck

ak(pk(z) − pk(z′))

∣∣∣∣∣∣

≥ |ak0(pk0(z) − pk0(z
′))| −

∣∣∣∣∣∣

∑

k:z,z′∈Ck

ak(pk(z) − pk(z′))

∣∣∣∣∣∣

≥ ab −

∣∣∣∣∣∣

∑

k:z,z′∈Ck

ak(pk(z) − pk(z′))

∣∣∣∣∣∣

≥ pmin − c4(hm log m)min(1,α1),

wherec4 > 0 is a constant. The fourth step follows sincedk0 6= d′k0
and hence either

pk0(z) is zero orpk0(z
′) is zero, and sincepk0 is bounded from below byb andak ≥

a. To see the last step, recall that the component densitiespk are Hölder-α1 smooth and
‖z′ − z‖ ≤ hm log m. Thus, we have:
∣∣∣∣∣∣

∑

k:z,z′∈Ck

ak(pk(z) − pk(z′))

∣∣∣∣∣∣
≤

∑

k:z,z′∈Ck

ak|pk(z) − pk(z′)|

≤
∑

k:z,z′∈Ck

ak



κ1(hm log m)α1 +

∣∣∣∣∣∣

[α1]∑

j=0

p
(j)
k (z)

j!
(z′ − z)j

∣∣∣∣∣∣





≤ c4(hm log m)min(1,α1),

wherec4 ≡ c4(K, κ1, α1, B) > 0 is a constant. Here the last step follows since ifpk is
Hölder-α1 smooth, then all its derivatives up to[α1] are bounded.
Now sincez, z′ ∈ supp(p) \ RB, using Theorem 1, we get with probability> 1 − 1/m,
for m ≥ max(m1, m3)

|p̂(z) − p̂(z′)| = |p̂(z) − p(z) + p(z) − p(z′) + p(z′) − p̂(z′)|
≥ |p(z) − p(z′)| − |p̂(z) − p(z)| − |p(z′) − p̂(z′)|
≥ pmin − c4(hm log m)min(1,α1) − 2ǫm

>
1

(log m)1/3
= δm.

The last step holds for large enoughm ≥ m4 ≡ m4(pmin, K, κ1, d, α1, B, G, κ0). Thus,
for case (ii) we have shown that,form ≥ max(m1, m3, m4) with probability> 1 − 1/m,
for all sequences connectingx1 andx2 through2

√
dhm-dense unlabeled data points, there

exists pointsz, z′ in the sequence such that‖z − z′‖ ≤ hm log m but |p̂(z)− p̂(z′)| > δm.
Thus,

x1 ∈ D, x2 6∈ D ⇒ x1 6 p↔ x2.

2. x1, x2 ∈ D ⇒ x1
p↔ x2 :

SinceD has width at least|γ| > 6
√

dhm, there exists a set of width> 2
√

dhm contained in
D \RB, and Corollary 2 implies that form ≥ m3, with probability> 1− 1/m, there exist
sequence(s) contained inD \ RB connectingx1 andx2 through2

√
dhm-dense unlabeled

data points. Since the sequence is contained inD \RB, and the density onD is Hölder-α1
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smooth, we have for all pointsz, z′ in the sequence such that‖z − z′‖ ≤ hm log m,

|p̂(z) − p̂(z′)| = |p̂(z) − p(z) + p(z) − p(z′) + p(z′) − p̂(z′)|
≤ |p̂(z) − p(z)| + |p(z) − p(z′)| + |p(z′) − p̂(z′)|
≤ 2ǫm + |p(z) − p(z′)|
≤ 2ǫm + c5(hm log m)min(1,α1)

≤ 1

(log m)1/3
= δm,

where c5 > 0 is a constant, and the last step holds for large enoughm ≥ m5 ≡
m5(K, κ1, d, α1, B, G, κ0). The third step follow sincez, z′ ∈ supp(p) \ RB, and in-
voking Theorem 1. To see the fourth step, sincez, z′ ∈ D, if z ∈ Ck thenz′ ∈ Ck and
vice versa. Thus,

|p(z) − p(z′)| =

∣∣∣∣∣∣

∑

k:z,z′∈Ck

ak(pk(z) − pk(z′))

∣∣∣∣∣∣
≤

∑

k:z,z′∈Ck

ak|pk(z) − pk(z′)|

≤
∑

k:z,z′∈Ck

ak



κ1(hm log m)α1 +

∣∣∣∣∣∣

[α1]∑

j=0

p
(j)
k (z)

j!
(z′ − z)j

∣∣∣∣∣∣





≤ c5(hm log m)min(1,α1),

wherec5 ≡ c5(κ1, K, B, α1) > 0 is a constant. Here the third step follows since‖z′−z‖ ≤
hm log m, andpk is Hölder-α1 on Ck. The last step follows since ifpk is Hölder-α1

smooth, then all its derivatives up to[α1] are bounded. Thus, we have shown that

x1, x2 ∈ D ⇒ x1
p↔ x2.

Thus, the result of the Lemma holds form ≥ m0 = max(m1, m3, m4, m5), wherem0 ≡
m0(pmin, K, κ1, d, α1, B, G, κ0) is a constant.

�

7.2 Proof of Corollary 1

Let Ω1 denote the event under which Lemma 1 holds. ThenP (Ωc
1) ≤ 1/m, whereΩc denotes the

complement ofΩ. Let Ω2 denote the event that the test pointX and training dataX1, . . . , Xn ∈ L
don’t lie in RB. Then

P (Ωc
2) ≤ (n + 1)P (RB) ≤ (n + 1)pmaxvol(RB) = O(nhm).

The last step can be explained as follows. Since the decisionboundaries are Lipschitz andK is
finite, the length of the decision boundaries is a finite constant, and hence vol(RB) = O(hm).

Now observe that̂fD,n essentially uses the clairvoyant knowledge of the decisionsetsD to dis-
cern which labeled pointsX1, . . . , Xn are in the same decision set asX . Conditioning onΩ1, Ω2,
Lemma 1 implies thatX, Xi ∈ D if and only if X

p↔ Xi for all i = 1, . . . , n. Thus, we can
define a semi-supervised learnerf̂m,n to be the same aŝfD,n except that instead of using clair-

voyant knowledge of whetherX, Xi ∈ D, f̂m,n is based on whetherX
p↔ Xi. It follows that

supPXY (γ) E[E(f̂m,n)|Ω1, Ω2] = supPXY (γ) E[E(f̂D,n)], and since the excess risk is bounded,

sup
PXY (γ)

E[E(f̂m,n)] = sup
PXY (γ)

E[E(f̂m,n)|Ω1, Ω2]P (Ω1, Ω2) + E[E(f̂m,n)|Ωc
1 ∪ Ωc

2]P (Ωc
1 ∪ Ωc

2)

≤ sup
PXY (γ)

E[E(f̂D,n)] + O

(
1

m
+ nhm

)

≤ ǫ2(n) + O

(
1

m
+ n

(
m

(log m)2

)−1/d
)

.

�

13



7.3 Density Adaptive Regression Results

7.3.1 Semi-Supervised Learning Upper Bound

If the margin |γ| > Co(m/(log m)2)−1/d, where Co = 6
√

dκ0 and m ≫ n2d, we show
that the semi-supervised learner proposed in Section 5 achieves a finite sample error bound of
O
(
(n/ logn)−2α/(d+2α)

)
. Observe that the clarivoyant counterpart off̂m,n(x) is given as

f̂D,n(x) = f̂D,n,x(x),

where

f̂D,n,,x(·) = arg min
f ′∈Γ

n∑

i=1

(Yi − f ′(Xi))
2
1x,Xi∈D + pen(f ′).

Observe that̂fD,n is a standard supervised learner that performs piecewise polynomial fit on each
decision setD ∈ D, where the regression function is Hölder-α smooth. LetnD = 1

n

∑n
i=1 1Xi∈D

denote the number of labeled training examples that fall in adecision setD ∈ D. Since the regres-
sion function on each decision set is Hölder-α smooth, it follows (for example, along the lines of
Theorem 8 in [17]) that

E[(f∗(X) − f̂D,n(X))21X∈D|nD] ≤ C

(
nD

log nD

)− 2α
d+2α

.

Now consider

E[(f∗(X) − f̂D,n(X))2] =
∑

D∈D

E[(f∗(X) − f̂D,n(X))21X∈D]P (D).

We will establish the result by taking expectation overnD ∼Binomial(n, P (D)) (if P (D) =
O(log n/n), we simply use the fact that the excess risk is bounded), and summing over all deci-
sion sets recalling that|D| is a finite constant. Consider two cases:

1. If P (D) > 28 log n
3n ,

E[(f∗(X) − f̂D,n(X))21X∈D]P (D)

= E[E[(f∗(X) − f̂D,n(X))21X∈D|nD]]P (D)

≤ E

[
C

(
nD

log nD

)− 2α
d+2α

]
P (D)

=

n∑

nD=0

C

(
nD

log nD

)− 2α
d+2α

P (nD)P (D)

≤ C

n∑

nD=0

(
nD

log n

)− 2α
d+2α

P (nD)P (D)

≤ C

(log n)−
2α

d+2α




⌈nP (D)/2⌉−1∑

nD=0

n
− 2α

d+2α

D P (nD) +

n∑

nD=⌈nP (D)/2⌉

n
− 2α

d+2α

D P (nD)



P (D)

≤ C

(log n)−
2α

d+2α

[
P (nD ≤ nP (D)/2) + (nP (D)/2)−

2α
d+2α

]
P (D)

≤ C

(log n)−
2α

d+2α

[
e−

3nP(D)
28 P (D) + 2n− 2α

d+2α P (D)
d

d+2α

]

≤ C

(log n)−
2α

d+2α

[
1

n
+ 2n− 2α

d+2α

]

= O

((
n

log n

)− 2α
d+2α

)
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The second last step follows since

P (nD ≤ nP (D)/2) = P (nP (D) − nD ≥ nP (D)/2)

= P

(
n∑

i=1

P (D) − 1Xi∈D ≥ nP (D)/2

)

= P

(
n∑

i=1

Zi ≥ nP (D)/2

)

≤ exp

{
(nP (D)/2)2/2

nP (D)(1 − P (D)) + nP (D)/6

}
≤ e−

3nP (D)
28 .

The last step follows using Bernstein’s inequality since for Zi = P (D) − 1Xi∈D, we have
that|Zi| ≤ 1 and var(Zi) = P (D)(1 − P (D)).

2. If P (D) ≤ 28 log n
3n , we have

E[(f∗(X) − f̂D,n(X))21X∈D]P (D) ≤ 4M2P (D) = O

(
log n

n

)
.

Thus, it follows that since|D| ≤ 2K

E[(f∗(X) − f̂D,n(X))2] = O

((
n

log n

)− 2α
d+2α

)
.

And using Corollary 1,

E[(f∗(X) − f̂m,n(X))2] = O

((
n

log n

)− 2α
d+2α

+
1

m
+ n

(
m

(log m)2

)−1/d
)

.

If m ≫ n2d, then1/m + n(m/(log m)2)−1/d = O((n/ log n)−1) and we get an upper bound of

O
(
(n/ log n)

− 2α
d+2α

)
on the performance of the semi-supervised learner.

If |γ| < Co(m/(log m)2)−1/d, the decision sets are not discernable using unlabeled dataand
the target regression function is piecewise Hölder-α smooth on each p-connected set. As shown
in [17], for piecewise Hölder-α functions, the proposed estimator achieves an error bound of
max(n−2α/(2α+d),n−1/d

). Also, notice that the number of resulting p-connected setscannot be
more than|D| since the procedure can miss detecting where the marginal density jumps, however
with high probability it will not declare two points to be p-connected when the marginal density
does not jump between them. Thus, the number of p-connected sets is also a finite constant. Using
similar analysis as above, an overall error bound ofmax(n−2α/(2α+d), n−1/d) follows, which scales
asn−1/d whend ≥ 2α/(2α − 1).

�

7.3.2 Supervised Learning Lower Bound

Consider the single cluster classP ′
XY with supp(pX) = [0, 1]d. For this class, it is known [18] that

there exists a constantc > 0 such that

inf
fn

sup
P′

XY

E[(f∗(X) − fn(X))2] ≥ cn−2α/(d+2α).

Notice thatP ′
XY ⊂ PXY (γ) for all γ. Therefore, we get:

inf
fn

sup
PXY (γ)

E[(f∗(X) − fn(X))2] ≥ cn−2α/(d+2α).

If γ < con
−1/d, whereco > 0 is a constant, we derive a tighter lower bound ofcn−1/d. Thus, we

will have
inf
fn

sup
PXY (γ)

E[(f∗(X) − fn(X))2] ≥ cn−1/d.
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To establish the tighter lower bound ofcn−1/d, we use the following theorem based on Assouad’s
lemma (adapted from Theorem 2.10 (iii) in [19]).

Theorem 2. LetΩ = {0, 1}q, the collection of binary vectors of lengthq. LetPΩ = {Pω, ω ∈ Ω}
be the corresponding collection of2q probability measures associated with each vector. Also let
H(·, ·) denote the Hellinger distance between two distributions, and ρ(·, ·) denotes the Hamming
distance between two binary vectors. IfH2(Pω′

, Pω) ≤ κ < 2, ∀ω, ω′ ∈ Ω : ρ(ω, ω′) = 1, then

inf
ω̂

max
ω∈Ω

Eω[ρ(ω̂, ω)] ≥ q

2
(1 −

√
κ(1 − κ/4))

We will construct such a collection of joint probability distributions PΩ ⊆ PXY (γ) satisfy-
ing Theorem 2 withq = ℓd−1, where ℓ = ⌈c6n

1/d⌉, c6 > 0 is a constant. Notice that
E[(f∗(X) − fn(X))2] = E[R(f∗, fn)], whereR(f∗, fn) denotes the mean square error

R(f∗, fn) =

∫
(f∗(x) − fn(x))2p(x)dx.

Since the mean square error is not symmetric, we will first relate it to a semi-distanced(·, ·) defined
as follows:

d2(f, fn) =

∫
(f∗(x) − fn(x))2dx.

For f∗ ≡ fω andfn ≡ f ω̂, we will show that the mean square error and semi-distance are related
as follows:

R(fω, f ω̂) ≥ b [d2(fω, f ω̂) − 4M2γ]. (2)

We will then show the following lower bound on the semi-distance in terms of the Hamming dis-
tance:

d2(fω, f ω̂) ≥ c7ℓ
−dρ(ω̂, ω) (3)

wherec7 > 0 is a constant. Thus, we will have

inf
fn

sup
PXY (γ)

E[(f∗(X) − fn(X))2] = inf
fn

sup
PXY (γ)

E[R(f∗, fn)]

≥ inf
f ω̂

sup
PΩ

E[R(fω, f ω̂)] = inf
ω̂

sup
ω∈Ω

Eω[R(fω, f ω̂)]

≥ b

(
inf
ω̂

sup
ω∈Ω

Eω[d2(fω, f ω̂)] − 4M2γ

)

≥ b

(
c7ℓ

−d inf
ω̂

sup
ω∈Ω

Eω[ρ(ω, ω̂)] − 4M2γ

)

≥ b
(
c7ℓ

−d q

2
(1 −

√
κ(1 − κ/4)) − 4M2γ

)

≥ b

(
c7

2c6
(1 −

√
κ(1 − κ/4)) − 4M2co

)
n−1/d

where the last step follows sinceq = ℓd−1, ℓ = ⌈c6n
1/d⌉ andγ < con

−1/d. Thus, there exists
co ≡ co(c6, c7, M, κ), for which we obtain the desired lower bound ofcn−1/d, wherec > 0 is a
constant.

We now constructPΩ ⊆ PXY (γ) along the lines of standard minimax construction that satisfies
Theorem 2 withq = ℓd−1, ℓ = ⌈c6n

1/d⌉, and Equations. (2) and (3). We construct the elements
(pω, fω) of our collection as follows. Letx = (x̃, xd) ∈ [0, 1]d, wherex̃ ∈ [0, 1]d−1 andxd ∈ [0, 1].
Define

x̃j̃ =
j̃ − 1/2

ℓ
and ηj̃(x̃) =

L

ℓ
ζ(ℓ(x̃ − x̃j̃))

wherẽj ∈ {1, . . . , ℓ}d−1 andζ > 0 is a Lipschitz function with Lipschitz constant1, and supp(ζ) =
(−1/2, 1/2)d−1. Now define

gω(x̃) =
∑

j̃∈{1,...,ℓ}d−1

ωj̃ηj̃(x̃)
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Figure 3: Examples of two sets of marginal density functionspω, pω′

for (a) γ < 0, (b) γ > 0 and
regression functionsfω, fω′

used for minimax construction.

Thengω(·) is a Lipschitz function with Lipschitz constantL. Now define forω ∈ Ω

pω(x) = apω
1 (x) + (1 − a)pω

2 (x),

wherea ≤ 1/2, pω
1 (x) is uniform and supported overCω

1 =
{
x ∈ [0, 1]d : xd ≥ 1

2 + γ
2 + gω(x̃)

}

andpω
2 (x) is uniform and supported overCω

2 =
{
x ∈ [0, 1]d : xd ≤ 1

2 − γ
2 + gω(x̃)

}
. Therefore,

the margin is equal toγ. And

fω(x) =
apω

1 (x)m1(x) + (1 − a)pω
2 (x)m2(x)

pω(x)
1{pω(x) 6=0} − M1{pω(x)=0},

wherem1(x) = M andm2(x) = −M . Let Y be continuous and bounded, and also assume that
pω
1 (Y |X = x), pω

2 (Y |X = x) ≤ W , whereW > 0 is a constant. This implies that

pω(Y |X = x) =
apω

1 (x)pω
1 (Y |X = x) + (1 − a)pω

2 (x)pω
2 (Y |X = x)

pω(x)
≤ 2BW

ab
=

pmaxW

pmin
.

Figure 3 shows examples of two marginal density functionspω, pω′

for positive and negative margin,
and corresponding regression functionsfω, fω′

.

Notice that the component densities are supported on compact, connected sets, are Hölder-α smooth
for anyα, and are bounded from above and below byb ≤ 1 andB ≥ 4. To see the latter, notice that

pω
1 (x) =

1

vol(Cω
1 )

=
1

1
2 − γ

2 −
∫

gω(x̃)dx̃
, pω

2 (x) =
1

vol(Cω
2 )

=
1

1
2 − γ

2 +
∫

gω(x̃)dx̃
.

The lower bound follows since vol(Cω
1 ), vol(Cω

1 ) ≤ 1, and the upper bound follows since

vol(Cω
1 ) ≥ vol(Cω

1 ) =
1

2
− γ

2
−
∫

gω(x̃)dx̃ >
1

2
− co

2
n−1/d − L‖ζ‖1

2c6
n−1/d ≥ 1/4.

Here the second last step follows since
∫

gω(x̃)dx̃ =
∑

ĩ∈{1,...,ℓ}d−1

ωĩηĩ(x̃) ≤ ℓd−1L‖ζ‖1ℓ
−d = L‖ζ‖1ℓ

−1 ≤ L‖ζ‖1

2c6
n−1/d,
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and the last step holds forn ≡ n(co, c6, d, L, ‖ζ‖1) large enough. Further, the support sets of the
component densities have Lipschitz boundaries with Lipschitz constantL. The component regres-
sion functions are uniformly bounded between−M andM , and are Hölder-α smooth for anyα.
ThusPΩ ⊆ PXY (γ).

We first establish (2).

R(fω, f ω̂) =

∫
(fω(x) − f ω̂(x))2pω(x)dx

≥ b

[∫
(fω(x) − f ω̂(x))21{pω(x) 6=0}dx

]

≥ b

[∫
(fω(x) − f ω̂(x))2dx −

∫
(fω(x) − f ω̂(x))21{pω(x)=0}dx

]

≥ b [d2(fω, f ω̂) − 4M2γ]

Next, we establish (3). We will consider two cases:
If γ > 0,

d2(fω, f ω̂) =

∫
(fω(x) − f ω̂(x))2dx

= 4M2
∑

ĩ∈{1,...,ℓ}d−1

|ωĩ − ω̂ĩ|2
∫

[0,1]d−1

ηĩ(x̃)dx̃ = 4M2L‖ζ‖1ℓ
−dρ(ω̂, ω)

If γ ≤ 0,

d2(fω, f ω̂) =

∫
(fω(x) − f ω̂(x))2dx

≥ min




2M(1−a)

vol(Cω
2 )

a

vol(Cω
1 )

+ (1−a)

vol(Cω
2 )

,

2M(1−a)

vol(Cω̂
2 )

a

vol(Cω̂
1 )

+ (1−a)

vol(Cω̂
2 )




2

·

∑

ĩ∈{1,...,ℓ}d−1

|ωĩ − ω̂ĩ|2
∫

[0,1]d−1

ηĩ(x̃)dx̃

≥ 4M2a2 min

(
vol(Cω

1 )

vol(Cω
2 )

,
vol(Cω̂

1 )

vol(Cω̂
2 )

)2

L‖ζ‖1ℓ
−dρ(ω, ω̂)

≥ 4M2 a2

16
L‖ζ‖1ℓ

−dρ(ω, ω̂)

The second step follows from the definition offω andpω, and the third step follows sincea ≤
1/2 ⇒ 1 − a ≥ a and since vol(Cω

1 ) ≤vol(Cω
2 ) for all ω ∈ Ω. To see the last step, observe that for

all ω ∈ Ω,

vol(Cω
1 )

vol(Cω
2 )

=
1
2 − γ

2 −
∫

gω(x̃)dx̃
1
2 − γ

2 +
∫

gω(x̃)dx̃
≥

1
2 −

∫
gω(x̃)dx̃

1
2 − γ

2 +
∫

gω(x̃)dx̃
≥

1
2 − L‖ζ‖1ℓ

−1

1 + L‖ζ‖1ℓ−1
≥ 1

4
.

Here the third step follows sinceγ ≥ −1 and
∫

gω(x̃)dx̃ ≤ L‖ζ‖1ℓ
−1, and the last step follows for

n ≡ n(c6, d, L, ‖ζ‖1) large enough sinceℓ = ⌈c6n
1/d⌉. Therefore, for allγ, we have

d2(fω, f ω̂) ≥ 4M2 a2

16
L‖ζ‖1ℓ

−dρ(ω, ω̂) =: c7ℓ
−dρ(ω, ω̂).

Thus, (3) is satisfied.

Now we only need to show that the condition of Theorem 2 is met,that is,H2(Pω′

, Pω) ≤ κ < 2,
∀ω, ω′ ∈ Ω : ρ(ω, ω′) = 1. Observe that

H2(Pω′

, Pω) = H2(Pω′

({X1, Y1}n
i=1), P

ω({X1, Y1}n
i=1))

= 2

(
1 −

n∏

i=1

(
1 − H2(Pω′

(Xi, Yi), P
ω(Xi, Yi))

2

))
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We now evaluate

H2(Pω′

(Xi, Yi), P
ω(Xi, Yi)) =

∫
(
√

pω′(Xi, Yi) −
√

pω(Xi, Yi))
2

=

∫
(
√

pω′

X (Xi)pω′

Y |X(Yi|Xi) −
√

pω
X(Xi)pω

Y |X(Yi|Xi))
2

Recall thatpω
Y |X(Yi|Xi) ≤ pmaxW/pmin. Sinceρ(ω, ω′) = 1, let j̃ denote the index for which

ωj̃ 6= ω′
j̃

and without loss of generality, assume thatωj̃ = 1 andω′
j̃

= 0. Also letBj̃ = {x : x̃ ∈
(x̃j̃ − 1

2ℓ , x̃j̃ + 1
2ℓ )}. We will evaluate the Hellinger integral over 4 different regions: (Here we use

± or∓ to denote that the top sign is for the caseγ > 0 and bottom sign is for the caseγ ≤ 0)

First consider

A1 := {x : x̃ ∈ Bj̃ , 1/2 ± γ/2 ≤ xd < 1/2 ± γ/2 + gω(x̃),

1/2 ∓ γ/2 < xd ≤ min(1/2 ∓ γ/2 + gω(x̃), 1/2 ± γ/2)}

Sincepω′

X (Xi), p
ω
X(Xi) ∈ [b, B] andpω′

Y |X(Yi|Xi), p
ω
Y |X(Yi|Xi) ∈ [0, pmaxW/pmin], for this re-

gion, we bound the argument of the integral byBpmaxW/pmin.
∫

A1

(
√

pω′

X (Xi)pω′

Y |X(Yi|Xi) −
√

pω
X(Xi)pω

Y |X(Yi|Xi))
2 ≤ BpmaxW

pmin

∫

A1

dx

≤ BpmaxW

pmin
2

∫
ηj̃dx̃

=
2BpmaxW

pmin
L‖ζ‖1ℓ

−d

≤ 2BpmaxWL‖ζ‖1

pmin(2c6)d
n−1

Forx 6∈ A1, notice thatpω′

Y |X(Yi|Xi) = pω
Y |X(Yi|Xi) ≤ pmaxW/pmin, therefore we have:

∫

x 6∈A1

(
√

pω′

X (Xi)pω′

Y |X(Yi|Xi) −
√

pω
X(Xi)pω

Y |X(Yi|Xi))
2

≤ pmaxW

pmin

∫

x 6∈A1

(√
pω′

X (Xi) −
√

pω
X(Xi)

)2

We now evaluate the latter integral over three regions: Before that, we set up some results that will
be used in all these cases.

|vol(Cω
1 ) − vol(Cω′

1 )|, |vol(Cω
2 ) − vol(Cω′

2 )| ≤
∫

ηj̃dx̃ = L‖ζ‖1ℓ
−d ≤ L‖ζ‖1

(2c6)d
n−1,

Also, we establish that

vol(Cω
1 ), vol(Cω′

1 ), vol(Cω
2 ), vol(Cω′

2 ) ≥ 1/4.

For this, observe that forn ≡ n(co, c6, d, L, ‖ζ‖1) large enough

vol(Cω′

1 ) ≥ vol(Cω
1 ) = 1/2 − γ/2 −

∫
gω(x̃) > 1/2 − co

2
n−1/d − L‖ζ‖1

2c6
n−1/d ≥ 1/4

vol(Cω
2 ) ≥ vol(Cω′

2 ) = 1/2 − γ/2 +

∫
gω′(x̃) ≥ 1/2 − co

2
n−1/d ≥ 1/4

We are now ready to consider the three regions:

A2 := {x : xd ≥ 1/2 ± γ/2 + gω(x̃)}
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Notice that
∫

A2

(√
pω′

X (Xi) −
√

pω
X(Xi)

)2

=

∫

A2

(√
a

vol(Cω′

1 )
−
√

a

vol(Cω
1 )

)2

≤ a

4

∫

A2

(
1

vol(Cω′

1 )
− 1

vol(Cω
1 )

)2

≤ 1

4

∫

A2

(
|vol(Cω

1 ) − vol(Cω′

1 )|
vol(Cω′

1 )vol(Cω
1 )

)2

≤ 4
L2‖ζ‖2

1

(2c6)2d
n−2

The second step follows since2 ≤
√

1/vol(Cω′

1 ) +
√

1/vol(Cω
1 ).

A3 := {x : xd ≤ 1/2 ∓ γ/2 + gω′(x̃)}
Notice that
∫

A3

(√
pω′

X (Xi) −
√

pω
X(Xi)

)2

=

∫

A3

(√
1 − a

vol(Cω′

2 )
−
√

1 − a

vol(Cω
2 )

)2

≤ 1 − a

4

∫

A3

(
1

vol(Cω′

2 )
− 1

vol(Cω
2 )

)2

≤ 1

4

∫

A3

(
|vol(Cω

2 ) − vol(Cω′

2 )|
vol(Cω′

2 )vol(Cω
2 )

)2

≤ 4
L2‖ζ‖2

1

(2c6)2d
n−2

The second step follows since2 ≤
√

1/vol(Cω′

2 ) +
√

1/vol(Cω
2 ).

A4 = {x : x̃ 6∈ Bj̃ , 1/2 ∓ γ/2 + gω′(x̃) < xd < 1/2 ± γ/2 + gω′(x̃),

x̃ ∈ Bj̃ min(1/2 ∓ γ/2 + gω(x̃), 1/2 ± γ/2) < xd < 1/2 ± γ/2}
If γ > 0, Notice that ∫

A4

(√
pω′

X (Xi) −
√

pω
X(Xi)

)2

= 0

If γ ≤ 0, then

∫

A4

(√
pω′

X (Xi) −
√

pω
X(Xi)

)2

=

∫

A4

(√
a

vol(Cω′

1 )
+

1 − a

vol(Cω′

2 )
−
√

a

vol(Cω
1 )

+
1 − a

vol(Cω
2 )

)2

≤ 1

4

∫

A4

(
a

vol(Cω′

1 )
+

1 − a

vol(Cω′

2 )
− a

vol(Cω
1 )

− 1 − a

vol(Cω
2 )

)2

≤ 1

4

∫

A4

(∣∣∣∣
a

vol(Cω′

1 )
− a

vol(Cω
1 )

∣∣∣∣+
∣∣∣∣

1 − a

vol(Cω′

2 )
− 1 − a

vol(Cω
2 )

∣∣∣∣

)2

≤ 1

4

∫

A4

(
|vol(Cω

1 ) − vol(Cω′

1 )|
vol(Cω′

1 )vol(Cω
1 )

+
|vol(Cω

2 ) − vol(Cω′

2 )|
vol(Cω′

2 )vol(Cω
2 )

)2

≤ 16
L2‖ζ‖2

1

(2c6)2d
n−2

The second step follows since2 ≤
√

a

vol(Cω′

1 )
+ 1−a

vol(Cω′

2 )
+
√

a

vol(Cω
1 )

+ 1−a

vol(Cω
2 )

.

Therefore, we get that

H2(Pω′

(Xi, Yi), P
ω(Xi, Yi)) ≤ 2BpmaxWL‖ζ‖1

pmin(2c6)d
n−1 + 24

pmaxWL2‖ζ‖2
1

pmin(2c6)2d
n−2

≤ 4BpmaxWL‖ζ‖1

pmin(2c6)d
n−1 =: c8n

−1
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where the second step holds forn ≡ n(c6, d, L, ‖ζ‖1) large enough. Andc8 > 0 is a constant.

H2(Pω′

, Pω) ≤ 2
(
1 −

(
1 − c8

2
n−1

)n)
≤ 2(1 − e−c8/2) =: κ

where the second step holds forn ≡ n(c8) large enough. Thus, the conditions of Theorem 2 are met
and we have established the desired lower bounds for supervised learning.

�
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