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Semi-Supervised Learning under Cluster Assumption

f(X) is the optimal predictor of Y given PXY

Data: n labeled points
iid∼ PXY , m unlabeled points

iid∼ PX , m � n

Goal: learn f(X) from data

The cluster assumption:
I PX is a mixture of components in d-dim
I f(X) smooth on each component
I γ is the margin (> 0 separation, < 0 overlap), characterizes difficulty

of learning problem
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Does Unlabeled Data Help?
[BB05,BDLP08,BL07,CC95,LW08,Ni08,Ri07]

Unlabeled data doesn’t help

For any γ > 0, given enough labeled data, unlabeled data is
superfluous (SSL does not result in faster rates of convergence).

Unlabeled data helps

Given a finite labeled data, there are learning problems with small
enough γ that SL fails, whereas perfect knowledge of components
would yield small error.
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Our Contributions

1 Benefits of SSL not always revealed through asymptotic analysis and
rates

2 Instead, we quantify them with finite sample analysis

3 We show SSL sometimes helps, sometimes not

4 There are cases in which SSL has faster rates than SL
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Finite Sample Bounds

fm,n: predictor learned from m unlabeled and n labeled points
I m = 0: supervised
I m > 0: semi-supervised
I m = ∞: oracle (full knowledge of PX , but not f)

R(fm,n): Risk under loss function `, e.g., ` = (fm,n(X)− Y )2

R(fm,n) = E(X,Y )∼PXY
[`(fm,n(X), Y )]

E(fm,n): Excess Risk, the difference between expected Risk (over
random draws of training set) and Bayes Risk

E(fm,n) = Etraining [R(fm,n)]− inf
f̃

R(f̃)

Minimax error
εm,n,γ

polylog∼ inf
fm,n

sup
P (γ)

E(fm,n)

ε∞,n,γ ≤ εm,n,γ ≤ ε0,n,γ
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Mathematical Formalization of Cluster Assumption

Components (compact support, Lipschitz boundary)

Density bounded from below and above, Hölder-α smooth

Decision sets D: all intersections of components

Overall density jumps at decision set boundaries
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SSL Approach

Oracle knows the shape of decision sets, learns within a decision set.

SSL mimics Oracle, learns only from connected labeled points

Connected: x1 ↔ x2 if there is a sequence
of unlabeled steppingstones: (1) close together, (2) similar local density

Connectedness is almost as good as knowing the decision sets:
Lemma: if |γ| > Cm−1/d, then for all pairs x1, x2 not in a small tube
around decision set boundaries, with large probability

x1, x2 in same decision set if and only if x1 ↔ x2
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SSL Error

Corollary: if |γ| > Cm−1/d, then SSL is only “a bit worse” than oracle:

εm,n,γ ≤ ε∞,n,γ + O
(
nm−1/d

)

The value of unlabeled data: if m � n s.t. nm−1/d ≤ ε∞,n,γ , then
SSL is as good as Oracle.

I if ε∞,n,γ decays polynomially, m must grow polynomially with n
I if ε∞,n,γ decays exponentially, m must grow exponentially with n

If, in addition, Oracle is better than any ordinary SL

ε∞,n,γ < ε0,n,γ

then SSL helps.
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Application to SSL Regression

Assumption: target function Hölder-α smooth within a decision set,
but may be discontinuous across decision sets.

Two possible sources of error:
1 regression error within decision sets n−2α/(2α+d)

2 error in estimating boundaries of decision sets n−1/d

Oracle: learn f on each decision set separately, ε∞,n,γ = n−2α/(2α+d)

SL: if γ > cn−1/d then ε0,n,γ = n−2α/(2α+d), otherwise ε0,n,γ = n−1/d

(worse: blur across decision sets).

SSL: if |γ| > Cm−1/d and m � n2d, then the same as Oracle.
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Unlabeled data: now it helps, now it doesn’t

margin Oracle SL SSL SSL
ε∞,n,γ ε0,n,γ εm,n,γ helps?

n−
1
d ≤ γ n−

2α
2α+d n−

2α
2α+d n−

2α
2α+d no

m−
1
d ≤ γ < n−

1
d n−

2α
2α+d n−

1
d n−

2α
2α+d yes

|γ| < m−
1
d n−

2α
2α+d n−

1
d n−

1
d no

γ < −m−
1
d n−

2α
2α+d n−

1
d n−

2α
2α+d yes

In particular, with γ < −γ0, SSL has a faster rate of error convergence
than SL, provided m � n2d.

Thank you
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Backup Slides
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Hölder Smoothness

If f is Hölder-α, then the k = bαc Taylor polynomial at x0, pk,f,x0 , yields
the approximation error bound:

|pk,f,x0(x)− f(x)| ≤ C|x− x0|α
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The Corollary

Even when |γ| > Cm−1/d, the Lemma may fail for two reasons:

One of the n labeled points or the test point falls in the small
uncertain tube.

I Volume of the tube O(m−1/d)
I This is the probability that one point falls in the tube
I Union bound gives O(nm−1/d)
I Risk is bounded
I The contribution to excess error is O(nm−1/d)

With probability 1/m connectedness does not imply same decision set
I The contribution to excess error is O(1/m)

Overall, O(1/m + nm−1/d) ∼ O(nm−1/d).
The lemma does not apply when |γ| ≤ Cm−1/d.
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