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Abstract

We might have had an earlier identification
of West Nile virus ten years ago had people
reported that they were seeing dead crows in
their backyards. This position paper suggests
a wildlife monitoring system for far upstream
detection of zoonotic disease outbreaks. Our
system integrates wildlife surveillance from
experts, news organizations, citizen scien-
tists, and incidental observers. We outline
the machine learning opportunities and chal-
lenges for such a system.

1. Background

Emerging diseases in the environment could have sig-
nificant impacts on human and animal health, food
production, and biodiversity. There has been height-
ened global awareness of the emergence of new infec-
tious diseases, and the re-emergence of known diseases
in new hosts and geographies. It is known that 75%
of emerging pathogens are zoonotic (those exchanged
between humans and other animals), and at least 70%
of these have a wildlife component, either as a host,
reservoir, or vector; recent examples include Avian
Influenza, SARS, and West Nile Virus. There is ev-
idence that each of these diseases was present and
affecting wildlife before transmission to humans oc-
curred; each of these previously undetected diseases
has now caused significant human morbidity and mor-
tality (Woolhouse & Gowtage-Sequeria, 2006; Sims
et al., 2005).

Unfortunately, even in developed countries, compre-
hensive systems for wildlife disease surveillance are not
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available. Although there have been improvements in
capacity over the past few years, they fall far short of
the surveillance systems currently in place for humans
and agricultural species. The two conditions that of-
ten create these gaps are the lack of clear responsi-
bilities for wildlife disease reporting in governmental
agencies, as well as the somewhat random nature of
observations of mortality events. Detecting diseases
in humans, pets and livestock is much easier, because
the individual, parent or owner is motivated to seek
treatment once illness is seen (Morner et al., 2002; Ra-
binowitz & Conti, 2010).

2. Experts, Newspapers, Citizen
Scientists, and You

Formal wildlife disease monitoring in the US has tra-
ditionally been carried out by experts at the Na-
tional Wildlife Health Center, which receives reports of
wildlife disease events primarily from US federal and
state agencies. The Center often accepts diagnostic
specimens from these cases to investigate the cause
of the event. Once analyses are complete, the infor-
mation is available in the form of the USGS NWHC
Epizootic Database, accessible at http://www.nwhc.
usgs.gov/mortality_events/ongoing.jsp.  How-
ever, this traditional monitoring approach is insuffi-
cient. To have the greatest chance of recognizing un-
common and spatially disparate events, we will need
to greatly expand the observational corps.

We propose to unite experts, news organizations, cit-
izen scientists, and incidental observers in creating
a wildlife monitoring and outbreak detection system,
with machine learning serving as the “glue.” These
groups have different characteristics:

e The experts at the Wildlife Disease Informa-
tion Node (WDIN; University of Wisconsin and
USGS) can provide definite diagnosis, i.e., labels,
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to an event. Nonetheless, the number of experts
and the cases they can process is limited. Further-
more, the diagnosis may have a relatively large
latency after the onset of the event.

Significant wildlife incidents are often recognized
by local news organizations. News reports are
an effective tool for event awareness, and serve
as a substitute for a more structured surveillance
program (Keller et al., 2009). WDIN searches
and sorts through these reports and produces a
Wildlife Disease News Digest (http:newsdigest.
wdin.org).

Citizen scientists are non-professionals who agree
to actively observe wildlife and report to pro-
fessionals via specific channels. One such chan-
nel is WDIN’s Wildlife Health Event Reporter
(WHER), a website that enables anyone to re-
port sightings of sick or dead wildlife (http:
//www.whmn.org/wher/). An accompanying mo-
bile phone app “Outbreaks Near Me” accepts
wildlife and human illness reports (http://
www.healthmap.org/outbreaksnearme/). With
awareness and interest, there can be many more
citizen scientists than experts — the key is to pro-
mote participation. The citizen scientists can pro-
vide fairly accurate descriptions of an event, but
usually cannot diagnose the cause of the event.
Their reports can be near real-time.

Incidental observers are people who produce ma-
chine readable information regarding wildlife, but
are otherwise not affiliated with nor necessar-
ily interested in wildlife monitoring. We may
view them as passive citizen scientists, or more
abstractly as human sensors with peculiar sig-
nal detection characteristics. A good example is
Twitter, which has been used in scientific stud-
ies including earthquake monitoring (Earle et al.,
2009). The following tweet is an example of
wildlife encounter: Dead armadillo on the side of
the road with a buzzard picking at it; what a lovely
stght on my trip to work. :P There is a huge
number of potential incidental observers, densely
distributed in time (around the clock) and space
(within populated areas). We speculate that inci-
dental wildlife reports tend to happen at the geo-
graphical boundaries where human meets nature
— deep inside forests there are few people while
deep inside populated areas there are few wild
animals. This is particularly relevant for zoonotic
disease monitoring where the transmission from
animals to human is likely to occur. Such reports
are also suitable for studying the impact of hu-

man development on ecology. On the other hand,
incidental reports are highly noisy. For example,
the vast majority of tweets that mention animal
names do not contain true wildlife encounters, as
exemplified by this tweet: saw your article on
Mario 3DS, how do you feel about them reusing
the raccoon tail? Being able to sift and winnow
is therefore crucial. Incidental reports also tend
to be incomplete, missing important information
such as time, location, species. These reports tend
to be real-time.

We believe combining information from all these
groups is essential to enhance our ability to detect
changes in the patterns of wildlife disease occurrence
that may signal the very earliest stages of disease emer-
gence in human / animal systems. We discuss machine
learning’s role next.

3. Opportunities and Challenges for
Machine Learning

We discuss some machine learning research questions
that may be important to zoonotic emerging disease
detection. When appropriate, we suggest potential ap-
proaches to address each question. Our discussion is
aimed at improving awareness in both the machine
learning and wildlife monitoring communities, rather
than offering definite solutions.

1. The information from different groups differ dra-
matically: we have a small amount of precise di-
agnosis from experts, larger amount of relatively
accurate event descriptions from news and citizen
scientists, and a huge amount of very noisy reports
from incidental observers. Reports generated by
citizen scientists and incidental observers are un-
labeled (in terms of disease diagnosis). Further-
more, many features might be either missing or
specified at a very coarse level. For example, only
1% of tweets come with GPS coordinates — even
that may not correspond to the location of the
wildlife event. Machine learning models for learn-
ing from unsupervised, semi-supervised, and
weakly supervised labels might offer a princi-
pled way to integrate such disparate information.

2. The experts’ effort is limited — they should ju-
diciously investigate the most suspicious wildlife
events. Sifting through the large number of re-
ports gathered automatically from news, citizen
scientists, and incidental observers, a machine
learning algorithm should help the experts priori-
tize events to investigate in order to maximize the
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chance of successfully detecting emerging diseases.
It should also take into consideration the availabil-
ity and cost of acquiring samples. Some relevant
machine learning techniques to start with might
be cost-sensitive active learning and rank-
ing.

. To identify news stories on wildlife events, tradi-
tional machine learning approaches in topic de-
tection and tracking can be used. Meanwhile,
active learning can similarly be used to close the
loop, supplying local news organizations with tips
automatically aggregated from the other groups.

. A report from a citizen scientist is more valu-
able than a report from an incidental observer.
We would like to raise awareness of channels
like WHER, “upgrading” interested incidental ob-
servers into contributing citizen scientists, and
maintaining participation from existing citizen
scientists. One possibility is to tap into the re-
search in social networks, identifying important
nodes (i.e., individuals or organizations) who are
most likely to not only participate as citizen sci-
entists, but also influence their neighboring nodes
in a social network. For instance, local Audubon
clubs may be good nodes to contact initially. As
another example, one can imagine a cyber robot
who automatically tweets and even contacts pro-
lific incidental observers.

. The noisy nature of incidental reports such as
tweets requires significant natural language pro-
cessing. An important task is to classify whether
a report is indeed a wildlife encounter or not (the
latter includes animal names used in non-animal
senses, historical or imaginary mention of animals,
forwarded news about wildlife, etc.). If yes, one
also needs to extract the type of event, the time,
the location, the animals involved, etc. Standard
information extraction algorithms need to be
adapted to the specific type of incidental reports
to be effective. The task is further complicated
by the fact that wildlife exists outside English-
speaking countries, too, necessitating multilingual
natural language processing.

. Reports generated by citizen scientists and inci-
dental observers are subject to several forms of se-
lective bias. One is spatial bias, where there are
fewer reporters in areas with abundant wildlife.
Another one is temporal bias, where human re-
porters are less active when nocturnal animals are
most active. Yet another one is psychological bias,
where one is more likely to tweet the sighting of a
dead cow than that of a dead crow. These biases

need to be calibrated and removed with statistical
methods and clever experimental design.

7. The view that incidental observers are sensors,
and the fact that an outbreak has limited spa-
tial and temporal footprint and is thus a sparse
signal, suggests that recent theory and algorithms
for sparse signal recovery might be brought to
bear on the task of zoonotic emerging disease de-
tection.

8. Reports from citizen scientists and incidental ob-
servers often include images and videos in addi-
tion to text description. For example, the WHER
system and twitpic.com both allow users to up-
load them. Images and videos provide vital con-
firmation to experts, because most people are not
good at identifying animals, and because they
contain contextual information of the surround-
ings for the wildlife event. Standard computer
vision techniques can be employed to help rec-
ognize the animal species and the scene. Its out-
put can complement, correct, or even replace tex-
tual descriptions. Computer vision is particularly
attractive as a cross-cultural approach, with less
dependencies on solving multilingual natural lan-
guage processing problems.

9. Expanding this project to developing countries
poses special challenges. Traditionally, disease
monitoring in developing countries relied heavily
on governmental data. In reality, health event
data for human, livestock, and wildlife is dif-
ficult to acquire in many developing countries.
However, the rapid penetration of technology can
change the situation in the near future. For ex-
ample, local events can be transmitted to a vil-
lage leader, who increasingly may have a phone
or web connection. This trend is evident from
the success of mobile-phone based projects such
as Ushahidi.org and the Mobile Phonebased In-
fectious Disease Surveillance System (Robertson
et al., 2010).

4. Roadkill on Twitter: The Power of
Incidental Reports

As a demonstration of the scientific value in inciden-
tal reports, we present a preliminary study of roadkill
statistics collected from Twitter. Although most con-
tain non-zoonotic animal deaths, these reports are still
useful to establish baseline spatial and temporal dis-
tribution statistics. Furthermore, we need to identify
roadkill in order to exclude them from zoonotic injured
or dead animal reports.
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Traditionally, the department of transportation and a
few roadkill observation websites collect reports from
citizen scientists. For example, the Roadkill project
recruited students and teachers to monitor roadkill
(http://roadkill.edutel.com/). At the project’s
peak, during an 8-week period in 1997 it received 3962
roadkill reports from its citizen scientists, or about 70
reports per day. However, such effort is not sustainable
year-round nor globally. Most people are not aware of
these systems or not willing to participate due to the
extra trouble they have to go through.

On the other hand, people are much more willing to
share their incidental observations through social me-
dia such as Twitter. With our primitive algorithm be-
low, we were already able to collect roadkill at a rate
of 120 reports per day. The rate is expected to in-
crease significantly as we improve our algorithm. Our
algorithm also has a much better spatial and temporal
coverage.

Our algorithm collects tweets through the Twitter
stream API using a keyword list containing 370 wild
animal names. During the 11-day period from April
23, 2011 to May 3, 2011, we collected 10,834,563 tweets
containing at least one keyword in our list. It then uses
a pipeline to identify the tweets describing roadkill and
extract event details. First, it retains tweets contain-
ing (ran AND over) or (dead AND road). Then, it
removes the tweets written in non-English language
by thresholding the fraction of non-English dictionary
words. Next, it parses the tweets using the Stanford
CoreNLP Tools (De Marneffe et al., 2006). Finally,
it extracts the victim animal species using manually
specified grammatical dependency rules. Our algo-
rithm also extracts the time stamp and approximate
location of each tweet. Among the tweets we collected,
1,294 roadkill tweets are identified, with a precision
better than 75%. Here are some examples:

o “Much love to the dead skunk in the middle of the
road Qaanchyyy”

e “oh god me and hannah just saw a dead squirrel
by the road and screamed... awful”

e “she ran over a kangaroo yesterday at the new side
of epping?! i never knew kangaroos are anywhere
near the city! just heard crazy incidents”

e “I'm 78% sure I ran over a dolphin with a jet
ski today. Shut your mouth hippies, Earth day is
over. Next time I'm aiming for the manatees.”

There are some interesting observations from the
events we extracted. Table 1 shows the top 20 most

Table 1. The top 20 roadkill species. The numbers are av-
erage roadkill tweets per day.

ANIMAL FREQUENCY || ANIMAL FREQUENCY
SQUIRREL 22 ARMADILLO 3
RABBIT 11 FOX 3
BIRD 11 RAT 2
SKUNK 10 TURKEY 2
SNAKE 9 || GOOSE 2
TURTLE 7 OPOSSUM 2
DUCK 6 MOUSE 2
FROG 5 BEAVER 1
DEER 5 CHIPMUNK 1
RACCOON 4 BEAR 1

frequent roadkill species. Squirrel are the most fre-
quent victims with greater frequency count than all
other animals.
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Figure 1. Temporal distribution of roadkill for four species.

Figure 1 shows the temporal distribution of roadkill
tweets for squirrel, bird, armadillo and raccoon. Each
curve is the probability density function of a species.
The z-axis is the time of day in UTC when the tweets
were generated. Given that US (especially east coast)
dominates the tweets, the most likely local time is
EDT and can be obtained by UTC-4. Clearly, squir-
rels and most birds have more probability density to
the right (i.e., approximately daytime), while armadil-
los and raccoons have more density to the left (night
time). This seems to correlate nicely with the fact that
squirrels and most birds are diurnal, while armadillos
and raccoons are nocturnal.

Figure 2 shows the spatial distribution in selected ge-
ographical regions of the most frequent species in-
volved in roadkill tweets. We filtered the self-reported
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(b) Australia

Figure 2. Spatial distribution of species in roadkill tweets

“user location” field for recognizable country and state
names. 130 out of 1294 roadkill tweets contain this
field. In Figure 2, a species is plotted only if it is in-
volved in two or more tweets (among the 130) from
that geographical region. Armadillos were more fre-
quently mentioned in southern United States than the
north part. More roadkill events were reported from
the east coast than elsewhere in the US. Kangaroos
have been encounter in Australia but not in the United
States, as expected.

5. Conclusion

We believe zoonotic emerging disease detection is a
rich domain, with the potential to further advance and
complement machine learning research in natural sci-
ences, including ecology and sustainability (Dietterich,
2009).
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