Multi-Manifold Semi-Supervised Learning

Andrew B. Goldberg[†], Xiaojin Zhu[†], Aarti Singh[‡], Zhiting Xu[†], Robert Nowak^{*}

[†] Computer Sciences Department, University of Wisconsin–Madison, USA [‡] Program in Applied and Computational Mathematics, Princeton University, USA Department of Electrical and Computer Engineering, University of Wisconsin–Madison, USA

Μοτινατιον

Semi-supervised learning uses unlabeled data to try to learn better classifiers and regressors
Common assumption: data forms clusters or resides on a single manifold, or multiple well-separated manifolds/clusters

But what if data is supported on a mixture of manifolds?

- Handwritten digit recognition
- Computer vision motion segmentation

Multiple manifolds

Multi-Manifold SSL Algorithm

- Given: *n* labeled and *M* unlabeled points, supervised learner
- 1. Use unlabeled points to infer $k \sim O(\log(n))$ decision sets \widehat{C}_i :
- 1.1 Select a subset of m < M unlabeled points
- 1.2 Form Hellinger-based graph on the n + m labeled and unlabeled points
- 1.3 Perform size-constrained spectral clustering to cut the graph into *k* parts
- 2. Use labeled points in \widehat{C}_i and supervised learner to train \widehat{f}_i

EXPERIMENTAL SETUP

Compared 3 learners:

- Global]: supervised learner using all labeled and ignoring unlabeled data
- [Clairvoyant]: trains one supervised learner per *true* decision set
- [SSL]: discovers decision sets using unlabeled data, then trains one supervised learner per decision set

RESULTS: LARGE *M*

- May intersect or partially overlap
- Different dimensionality, orientation, density

Existing SSL approaches not suited for multi-manifold data

e.g., graph-based methods may diffuse information across the wrong manifolds

THEORETIC PERSPECTIVES

Cluster Case (Singh et al., NIPS 2008)

- Assume target f locally smooth on decision sets delineated by jumps in marginal density
- Learn sets using unlabeled data to simplify task
- \blacktriangleright Complexity: min margin γ between sets
- SSL helps if sets are resolvable using unlabeled data but not labeled data

Single Manifold Case

- Assume f is smooth w.r.t low dim manifold
- Unlabeled data provides knowledge of geodesic distances
- Complexity: curvature r₀, branch separation s₀
 SSL helps if unlabeled data allows better recovery of manifold structure

3. For test point $x^* \in \widehat{C}_i$, predict $\widehat{f}_i(x^*)$

HELLINGER DISTANCE GRAPH

Building block 1:

Local sample covariance matrices

$$\Sigma_{\boldsymbol{x}} = \sum_{\boldsymbol{x}' \in \boldsymbol{N}(\boldsymbol{x})} (\boldsymbol{x}' - \mu_{\boldsymbol{x}}) (\boldsymbol{x}' - \mu_{\boldsymbol{x}})^{\top} / (|\boldsymbol{N}(\boldsymbol{x})| - 1)$$

where N(x) is neighborhood of labeled and unlabeled data

Building block 2: Hellinger distance:

 $H(\mathcal{N}(x; 0, \Sigma_i), \mathcal{N}(x; 0, \Sigma_i)) =$

 $\sqrt{1-2^{D/2}|\Sigma_i|^{1/4}|\Sigma_j|^{1/4}/|\Sigma_i+\Sigma_j|^{1/2}}$

H is small when local geometry similar; large otherwise

H = 0.02 H = 0.28 H = 1.0 H = 1.0

RESULTS: TOO SMALL *M*

Multi-Manifold Case

- Goal: recover manifolds and their decision sets
- Analysis combines cluster and manifold cases
- Solution Complexity based on γ , r_0 , s_0

SL vs SSL gains (Single Manifold)

 $n^{-rac{1}{D}}\sim$ labeled data spacing \gg unlabeled data spacing $\sim m^{-rac{1}{D}}$

Condition number $\kappa_{SM} := \min(r_0, s_0)$

Manifold class	$\kappa_{\rm SM} \gg n^{-rac{1}{D}}$	$n^{-\frac{1}{D}} \gg \kappa_{\rm SM} \gg m^{-\frac{1}{D}}$	$m^{-rac{1}{D}}\gg\kappa_{\mathrm{SM}}$
SSL helps?	×	✓	×
SSL upper bound	$n^{-rac{2lpha}{2lpha+d}}$	$n^{-rac{2lpha}{2lpha+d}}$	O(1)
SL lower bound	$n^{-rac{2lpha}{2lpha+d}}$	$\Omega(1)$	$\Omega(1)$

similar density dimension orientation

Graph construction:

- Select an approximate cover of the dataset
- Compute Σ for these n + m points using all data
- ► Connect in Mahalanobis *k*NN graph, RBF weights: $w_{ij} = \exp(-H^2(\Sigma_i, \Sigma_j)/(2\sigma^2))$

SIZE-CONSTRAINED SPECTRAL CLUSTERING

To find decision sets, we perform spectral clustering on the Hellinger graph.

Goal of SSL poses new challenges:

Want SSL to degrade gracefully

Avoid too many subproblems that might increase supervised learning variance
Solution: Ensure number of decision sets does not grow polynomially with *n*, and ensure each set contains enough labeled/unlabeled points
Constraints on decision sets (i.e., clusters):
Number of clusters grows as k ~ O(log(n))

With less unlabeled data (n = 80), SSL performance degrades, but is still no worse than Global supervised learning (0.20 \pm 0.05).

LATE-BREAKING RESULTS

Using Hellinger Graph with Manifold Regularization.

- Global/Supervised
- Manifold Regularization with kNN/RBF graph
- MR using Hellinger graph

- Each cluster must have at least $a \sim O(n/\log^2(n))$ labeled points
- Each cluster must have at least $b \sim O(m/\log^2(n))$ unlabeled points

Enforced using constrained k-means based on Bradley et al. (2000)

CONCLUSIONS

Extended SSL theory to multiple manifolds
Practical algorithm to find decision sets that may differ in density, dimension, and orientation
Novel Hellinger distance based graph
Future: Geodesic distances, automatic parameter selection, large scale study

http://pages.cs.wisc.edu/~goldberg

