
Learning Bigrams from Unigrams

Xiaojin Zhu, Andrew B. Goldberg, Michael Rabbat†, and Robert Nowak

University of Wisconsin–Madison
†McGill University

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 1 / 1

Privacy attack through index file

your file

NLP software
=⇒

bag-of-word
index

access
⇐=

hacker

What can the hacker learn?

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 2 / 1

Privacy attack through index file

your file

NLP software
=⇒

bag-of-word
index

access
⇐=

hacker

What can the hacker learn?

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 2 / 1

Privacy attack through index file

your file

NLP software
=⇒

bag-of-word
index

access
⇐=

hacker

What can the hacker learn?

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 2 / 1

Privacy attack through index file

your file

NLP software
=⇒

bag-of-word
index

access
⇐=

hacker

What can the hacker learn?

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 2 / 1

Bag-of-word (BOW) representation

A document in its original order z1 =“〈d〉 really really neat”

Its BOW: unigram count vector

x1 = (x11, . . . , x1W) = (10 . . . 010 . . . 020 . . .)

Can the hacker recover word order from x1, without extra knowledge
of the language?

No: x1 could be from “〈d〉 really neat really” too

What if the hacker has n � 1 BOWs x1, . . . ,xn? Traditional
wisdom: all it can learn is a unigram LM (word frequencies).

Perhaps surprisingly . . .

We will learn a bigram LM from x1, . . . ,xn, as if we have the ordered
documents z1, . . . , zn.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 3 / 1

Bag-of-word (BOW) representation

A document in its original order z1 =“〈d〉 really really neat”

Its BOW: unigram count vector

x1 = (x11, . . . , x1W) = (10 . . . 010 . . . 020 . . .)

Can the hacker recover word order from x1, without extra knowledge
of the language? No: x1 could be from “〈d〉 really neat really” too

What if the hacker has n � 1 BOWs x1, . . . ,xn? Traditional
wisdom: all it can learn is a unigram LM (word frequencies).

Perhaps surprisingly . . .

We will learn a bigram LM from x1, . . . ,xn, as if we have the ordered
documents z1, . . . , zn.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 3 / 1

Bag-of-word (BOW) representation

A document in its original order z1 =“〈d〉 really really neat”

Its BOW: unigram count vector

x1 = (x11, . . . , x1W) = (10 . . . 010 . . . 020 . . .)

Can the hacker recover word order from x1, without extra knowledge
of the language? No: x1 could be from “〈d〉 really neat really” too

What if the hacker has n � 1 BOWs x1, . . . ,xn?

Traditional
wisdom: all it can learn is a unigram LM (word frequencies).

Perhaps surprisingly . . .

We will learn a bigram LM from x1, . . . ,xn, as if we have the ordered
documents z1, . . . , zn.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 3 / 1

Bag-of-word (BOW) representation

A document in its original order z1 =“〈d〉 really really neat”

Its BOW: unigram count vector

x1 = (x11, . . . , x1W) = (10 . . . 010 . . . 020 . . .)

Can the hacker recover word order from x1, without extra knowledge
of the language? No: x1 could be from “〈d〉 really neat really” too

What if the hacker has n � 1 BOWs x1, . . . ,xn? Traditional
wisdom: all it can learn is a unigram LM (word frequencies).

Perhaps surprisingly . . .

We will learn a bigram LM from x1, . . . ,xn, as if we have the ordered
documents z1, . . . , zn.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 3 / 1

Bag-of-word (BOW) representation

A document in its original order z1 =“〈d〉 really really neat”

Its BOW: unigram count vector

x1 = (x11, . . . , x1W) = (10 . . . 010 . . . 020 . . .)

Can the hacker recover word order from x1, without extra knowledge
of the language? No: x1 could be from “〈d〉 really neat really” too

What if the hacker has n � 1 BOWs x1, . . . ,xn? Traditional
wisdom: all it can learn is a unigram LM (word frequencies).

Perhaps surprisingly . . .

We will learn a bigram LM from x1, . . . ,xn, as if we have the ordered
documents z1, . . . , zn.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 3 / 1

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 4 / 1

Mission: possible
An example of exact bigram LM recovery:

Generative model: 1. z ∼ θ = {p, q, r}; 2. z → x by removing word order.

P (x|θ) =
∑

z∈σ(x)

P (z|θ) =
∑

z∈σ(x)

|x|∏
j=2

P (zj |zj−1)

e.g., x =(〈d〉:1, A:2, B:1) has unique permutations σ(x) = {“〈d〉 A A B”,
“〈d〉 A B A”, “〈d〉 B A A”}.
Assuming all docs have length |x| = 4, then only 4 kinds of BOWs:

(〈d〉:1, A:3, B:0) rp2

(〈d〉:1, A:2, B:1) rp(1− p) + r(1− p)(1− q) + (1− r)(1− q)p
(〈d〉:1, A:0, B:3) (1− r)q2

(〈d〉:1, A:1, B:2) 1-above

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 5 / 1

Mission: possible
An example of exact bigram LM recovery:

Generative model: 1. z ∼ θ = {p, q, r}; 2. z → x by removing word order.

P (x|θ) =
∑

z∈σ(x)

P (z|θ) =
∑

z∈σ(x)

|x|∏
j=2

P (zj |zj−1)

e.g., x =(〈d〉:1, A:2, B:1) has unique permutations σ(x) = {“〈d〉 A A B”,
“〈d〉 A B A”, “〈d〉 B A A”}.

Assuming all docs have length |x| = 4, then only 4 kinds of BOWs:

(〈d〉:1, A:3, B:0) rp2

(〈d〉:1, A:2, B:1) rp(1− p) + r(1− p)(1− q) + (1− r)(1− q)p
(〈d〉:1, A:0, B:3) (1− r)q2

(〈d〉:1, A:1, B:2) 1-above

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 5 / 1

Mission: possible
An example of exact bigram LM recovery:

Generative model: 1. z ∼ θ = {p, q, r}; 2. z → x by removing word order.

P (x|θ) =
∑

z∈σ(x)

P (z|θ) =
∑

z∈σ(x)

|x|∏
j=2

P (zj |zj−1)

e.g., x =(〈d〉:1, A:2, B:1) has unique permutations σ(x) = {“〈d〉 A A B”,
“〈d〉 A B A”, “〈d〉 B A A”}.
Assuming all docs have length |x| = 4, then only 4 kinds of BOWs:

(〈d〉:1, A:3, B:0) rp2

(〈d〉:1, A:2, B:1) rp(1− p) + r(1− p)(1− q) + (1− r)(1− q)p
(〈d〉:1, A:0, B:3) (1− r)q2

(〈d〉:1, A:1, B:2) 1-above

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 5 / 1

Mission: possible

Let true θ = {r = 0.25, p = 0.9, q = 0.5}. Given x1 . . .xn, n →∞, the
observed frequency of BOWs will be:

(〈d〉:1, A:3, B:0) 20.25%
(〈d〉:1, A:2, B:1) 37.25%
(〈d〉:1, A:0, B:3) 18.75%
(〈d〉:1, A:1, B:2) 100%-above

Matching probability with observed frequency
rp2 = 0.2025
rp(1− p) + r(1− p)(1− q)

+(1− r)(1− q)p = 0.3725
(1− r)q2 = 0.1875

exactly recovers θ.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 6 / 1

Mission: possible

Let true θ = {r = 0.25, p = 0.9, q = 0.5}. Given x1 . . .xn, n →∞, the
observed frequency of BOWs will be:

(〈d〉:1, A:3, B:0) 20.25%
(〈d〉:1, A:2, B:1) 37.25%
(〈d〉:1, A:0, B:3) 18.75%
(〈d〉:1, A:1, B:2) 100%-above

Matching probability with observed frequency
rp2 = 0.2025
rp(1− p) + r(1− p)(1− q)

+(1− r)(1− q)p = 0.3725
(1− r)q2 = 0.1875

exactly recovers θ.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 6 / 1

Let’s get real
Real documents are not generated from a bigram LM. Maximize log
likelihood instead. Parameter θ = [θuv = P (v|u)]W×W .

loglik: `(θ) ≡ 1/C

n∑
i=1

log P (xi|θ), C =
n∑

i=1

(|xi| − 1)

Multiple local optima. Regularize with prior bigram LM φ (estimated from
BOWs too). Average KL-divergence over all histories:

D(φ,θ) ≡ 1
W

W∑
u=1

KL(φu·‖θu·).

Our optimization problem:

max
θ

`(θ)−D(φ,θ)

subject to θ1 = 1, θ ≥ 0.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 7 / 1

The EM algorithm

It is possible to derive an EM update:

θ(t)
uv ≡ P (v|u;θ(t)) ∝

n∑
i=1

∑
z∈σ(xi)

P (z|xi,θ
(t−1))cuv(z) +

C

W
φuv

cuv(z) is count of “uv” in z

Normalize over v = 1 . . .W

Initialize θ(0) = φ

σ(x) can be huge. Estimate
∑

z∈σ(xi)
P (z|xi,θ

(t−1))cuv(z) with
importance sampling.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 8 / 1

A prior bigram LM φ

Our prior uses no extra language knowledge (can and should be
included for specific domains)

Frequency of document co-occurrence

φuv ≡ P (v|u;φ) ∝
n∑

i=1

δ(u, v|x)

δ(u, v|x) =
I 1, if words u, v co-occur (regardless of their counts) in BOW x
I 0, otherwise

Other priors possible, see paper.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 9 / 1

Data

Smallish, due to efficiency issues

SVitchboard 1: small vocabulary Switchboard, with different
vocabulary sizes [King et al. 2005]

SumTime-Meteo: weather forecasts for offshore oil rigs in the North Sea
[Sripada et al. 2003]

Corpus W − 1 # Docs # Tokens |x| − 1
SV10 10 6775 7792 1.2
SV25 25 9778 13324 1.4
SV50 50 12442 20914 1.7
SV100 100 14602 28611 2.0
SV250 250 18933 51950 2.7
SV500 500 23669 89413 3.8
SumTime 882 3341 68815 20.6

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 10 / 1

We recover sensible bigrams in θ

Most demoted and promoted bigrams in θ compared to prior φ (sorted by
the ratio θhw/φhw on SV500)

h w ↓ w ↑
i yep, bye-bye, ah, good-

ness, ahead
mean, guess, think, bet,
agree

you let’s, us, fact, such, deal thank, bet, know, can, do

right as, lot, going, years, were that’s, all, right, now,
you’re

oh thing, here, could, were,
doing

boy, really, absolutely,
gosh, great

that’s talking, home, haven’t,
than, care

funny, wonderful, true, in-
teresting, amazing

really now, more, yep, work,
you’re

sad, neat, not, good, it’s

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 11 / 1

Our θ has good test set perplexity

Train on x1 . . .xn, test on ordered documents zn+1 . . . zm (5-fold
cross validation, all differences statistically significant)

“Oracle” bigram trained on z1 . . . zn to provide lower bound
(Good-Turing)

Corpus unigram prior φ θ oracle 1 EM iter

SV10 7.48 6.52 6.47 6.28 <1s

SV25 16.4 12.3 11.8 10.6 0.1s

SV50 29.1 19.6 17.8 14.9 4s

SV100 45.4 29.5 25.3 20.1 11s

SV250 91.8 60.0 47.3 33.7 8m

SV500 149.1 104.8 80.1 50.9 3h

SumTime 129.7 103.2 77.7 10.5 4h

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 12 / 1

Our θ reconstructs z from x better

z = argmaxz∈σ(x)P (z|θ or φ).
Memory-bounded A∗ search with admissible heuristic

Accuracy % whole doc word pair word triple

φ 30.2 33.0 11.4
θ 31.0 35.1 13.3

(SV500, 5-fold CV, all differences statistically significant)

z by φ z by θ

just it’s it’s it’s just going it’s just it’s just it’s going
it’s probably out there else something it’s probably something else out there

the the have but it doesn’t but it doesn’t have the the
you to talking nice was it yes yes it was nice talking to you

that’s well that’s what i’m saying well that’s that’s what i’m saying
a little more here home take a little more take home here
and they can very be nice too and they can be very nice too
i think well that’s great i’m well i think that’s great i’m

but was he because only always but only because he was always

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 13 / 1

We thank

Wisconsin Alumni Research Foundation
NSF CCF-0353079, CCF-0728767

NSERC of Canada

and you.

Xiaojin Zhu (Univ. Wisconsin-Madison) Learning Bigrams from Unigrams 14 / 1

