p-voltages: Laplacian Reqgularization for Semi-Supervised Learning
on High-Dimensional Data

SETTING

e High-dimensional i.i.d. data
o \We want to compute a “smooth” function over the data for clas-
sification or regression
e Semi-supervised setting - small number of labeled data points,
large number of unlabeled data points
e We construct a similarity graph over the data
- e.g. knn-graph or epsilon graph
- edge weights are some Euclidean similarity kernel

PROBLEM WITH EXISTING METHOD

Existing method: Laplacian Regularization algorithm

e Idea: label the nodes in a graph with a harmonic function

e Corresponds to the voltages in an electric network

e Hold labeled nodes fixed with v=1 (positive) or v=0 (nhegative)

min { Z Wap (Vg — 0p)° | Vs — 1 = 1}
(

Problem: Leads to a “flat, spiky” pathology when the number of

points grows to infinity

o Almost-everywhere constant function: “flathess”

e In local neighborhoods around labeled points, dramatic change in
voltage: “spikiness”

e From an electricity perspective, current is distributed too widely to
result in significant voltage drop in most of the graph

e Not suitable for classification or regression in high dimensions or
for large datasets

pP-ELECTRIC NETWORKS AND THE p-VOLTAGES ALGORITHM

p-electricity is hypothetical form of electricity which concentrates
itself on fewer paths. The concentration parameter is p.

e QOur world: p=2 ]
e We consider 1<p<p* = el where d is the dimension of the
underlying space

Voltages and currents follow p-Ohm’s Law in a p-electric network:
Vo — Uy = 519N (iap)|ian|?  Tab

The p-voltages algorithm uses this modified optimization problem:

: ‘Ua — Ub‘]%
mvm Z — Ve — Uy = 1

We can use a standard numerical solver (e.g. MATLAB Optimization
Toolbox) to calculate this. It is a convex objective function over a
convex set, so a unique solution exists.

OUR CONTRIBUTIONS

We disprove a conjecture from [1] which
proposes that p-voltages can be used as a
computationally convenient way to classify
by p-resistances. That is, for all p > 1,

v, — U > v, — U, <= Ry(u,t) > Ry(s,u)

To do this, we analyze a simple counter-
example graph (shown below) and note
that in numerical experiments, the property
often does not hold for all nodes in the
graph. However, we still advocate using the
p-voltages algorithm in its own right for
classification.

ILLUSTRATIVE EXAMPLE

A 3-d “barbell” graph is formed with two Gaussians connected by a cylinder. The voltages of
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We prove that p-voltage solutions are well-formed with two theorems:

Theorem 1.
If we define the following quantities,

Vi = max{|vs — v,|,u € N(s)}
Vi, = max{|v, — v],u € N(t)}
V= vy — v = Ry(s, ).

then,

Vi + Vi
V

>0 as n — o0.

That is, the maximum voltage drop in the
local neighborhood of the source and sink
points is negligible as the size of the graph
grows. Thus, the solution does not have the
spike problem.

[1] M. Alamgir and U. von Luxburg. Phase transition in the
family of p-resistances. NIPS 2011.

a single labeled source node (red) and sink node (blue) are held fixed. The resulting voltages
are shown as a spectrum from red (1) to blue (0).
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Theorem 2. Vi
Consider the ratio 7 , which is the portion of the
total graph-wide change in p-voltage which occurs

in region M. If M is a substantial region (defined in

d
the paper) for constant c<€ (0,1), and »<-—

d—1"1
then we know that £ > .

Contracted graph used to lower bound the p-resistance
of the graph in the proof of Theorem 2.

Using this theorem we can construct several different
substantial regions in a graph and conclude that the
voltage drop must be distributed throughout. Thus,
the solution is not flat, either.

EMPIRICAL RESULTS

We compared the p-voltages algorithm to the
standard Laplacian Regularization algorithm as
well as a version which uses the ad-hoc Class Mass
Normalization (CMN) heuristic. We also compared with
the Iterated Laplacian algorithm, which attempts to
solve the problem using a higher-order regularizer.

The datasets come from the popular Chapelle Semi-
Supervised Learning benchmark, and contain both
synthetic and "“real-world” datasets. Results are
averaged over twelve training-test set splits.

Dataset LapReg LapReg + CMN IterLap p-voltages
g241c  48.95 £ 4.38 22.46 £+ 1.42 19.40 + 4.88 33.74 = 7.20
g241n  49.93 £+ 1.20 30.88 & 3.43 13.15 & 0.97 29.91 £ 3.67
Digitl 8.81 & 0.56 3.74 £ 1.05 2.24 4+ 0.81 3.14 + 0.95
USPS  19.19 £ 0.67 10.91 4+ 1.06 4.58 £0.86  7.54 & 1.98

BCI 46.89 £+ 2.33 46.19 + 2.14 45.67 &£ 2.75 45.03 £ 2.78

Average Test Set Classification Error Percentage & Standard Error on
Chapelle Benchmark

p-voltages outperforms Laplacian Regularization on
all but one of the datasets. However, empirically the
algorithm does not outperform the state-of-the-art

[terated Laplacian algorithm.
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