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SETTING

•		 High-dimensional i.i.d. data
•		 We want to compute a “smooth” function over the data for clas-
sification or regression
•		 Semi-supervised setting - small number of labeled data points, 
large number of unlabeled data points
•		 We construct a similarity graph over the data
		  - e.g. knn-graph or epsilon graph
		  - edge weights are some Euclidean similarity kernel

Existing method: Laplacian Regularization algorithm
•		 Idea: label the nodes in a graph with a harmonic function
•		 Corresponds to the voltages in an electric network
•		 Hold labeled nodes fixed with v=1 (positive) or v=0 (negative)

Problem: Leads to a “flat, spiky” pathology when the number of 
points grows to infinity
•	 Almost-everywhere constant function: “flatness”
•	 In local neighborhoods around labeled points, dramatic change in 
voltage: “spikiness”
•	 From an electricity perspective, current is distributed too widely to 
result in significant voltage drop in most of the graph
•	 Not suitable for classification or regression in high dimensions or 
for large datasets

p-electricity is hypothetical form of electricity which concentrates
itself on fewer paths. The concentration parameter is p.
•		 Our world: 
•		 We consider							         , where d is the dimension of the 
underlying space

Voltages and currents follow p-Ohm’s Law in a p-electric network:

The p-voltages algorithm uses this modified optimization problem:

We can use a standard numerical solver (e.g. MATLAB Optimization 
Toolbox) to calculate this. It is a convex objective function over a 
convex set, so a unique solution exists. This research is supported in part by National Science Foundation grant IIS-0916038.

We compared the p-voltages algorithm to the
standard Laplacian Regularization algorithm as 
well as a version which uses the ad-hoc Class Mass
Normalization (CMN) heuristic. We also compared with 
the Iterated Laplacian algorithm, which attempts to 
solve the problem using a higher-order regularizer.

The datasets come from the popular Chapelle Semi-
Supervised Learning benchmark, and contain both 
synthetic and “real-world” datasets. Results are
averaged over twelve training-test set splits.

Dataset LapReg LapReg + CMN IterLap p-voltages
g241c 48.95 ± 4.38 22.46 ± 1.42 19.40 ± 4.88 33.74 ± 7.20
g241n 49.93 ± 1.20 30.88 ± 3.43 13.15 ± 0.97 29.91 ± 3.67
Digit1 8.81 ± 0.56 3.74 ± 1.05 2.24 ± 0.81 3.14 ± 0.95
USPS 19.19 ± 0.67 10.91 ± 1.06 4.58 ± 0.86 7.54 ± 1.98
BCI 46.89 ± 2.33 46.19 ± 2.14 45.67 ± 2.75 45.03 ± 2.78

Table 1: Average Test Set Classification Error Percentage and Standard Error on Chapelle Benchmark

threshold to an appropriate value by using the size of the
labeled classes as a prior. In practice this significantly im-
proves the performance of Laplacian Regularization. Third,
we test Iterated Laplacians of [5], which seeks to fix Lapla-
cian Regularization using an exponentiated Laplacian to
provide a higher order norm. Finally, we test the p-voltages
algorithm.

To determine the other parameters of the algorithms, we
performed a grid search and chose the best setting by vali-
dation on the first training set. A random tuning set of size
10 was withheld several times from the training set and the
parameters which provided the lowest average classification
error were selected. The p parameter for p-voltages was se-
lected among

{
128
127

, 64
63
, 32
31
, 16
15
, 8
7
, 6
5
, 4
3
, 3
2
, 2
}
. The m param-

eter of Iterated Laplacians was chosen among {2, 3, 4, 6, 8,
16, 32, 64, 128}, the µ parameter among

{
10−2, 10−4, 10−6

}
and the Laplacian type among the four types listed in [5].

Once the final parameters were set, we ran the algorithms
on each of the twelve splits using the training sets as the
labeled points and measuring classification error on the test
sets. The mean classification error rate and standard error
over the twelve splits for each algorithm and dataset is shown
in Table 1.

There is a mixture of positive and negative conclusions
from these results. On one hand, the p-voltages algorithm
outperformed Laplacian Regularization significantly on ev-
ery dataset. On all but one of the datasets, p-voltages
also outperformed the version with class mass normaliza-
tion, which suggests that not only does the p-voltage solu-
tion have “better shape”, it also provides a better ranking of
the data points. However, the current state-of-the-art Iter-
ated Laplacians algorithm performed better on all but one
of the datasets. From a practical standpoint, one advantage
of the p-voltages algorithm is that it has only a single pa-
rameter p to set as compared to Iterated Laplacians, which
has three (m, µ, and L). This made the parameter search
significantly more difficult for Iterated Laplacians. It also
may have contributed to the success of Iterated Laplacians
since the algorithm had more degrees of freedom to tune.

5. CONCLUSION
We have investigated many of the properties as well as the

performance of the p-voltages algorithm for semi-supervised
learning. While we proved that p-voltage solutions are not
equivalent to p-resistance solutions, we also showed that p-
voltage solutions are potentially valuable as they do not suf-
fer from the same limitations as Laplacian Regularization.
Numerical experiments confirmed these results, though em-
pirically p-voltage did not outperform Iterated Laplacian.
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APPENDIX
A. HELPFUL P-VOLTAGE RESULTS
To prove that ties can always be resolved in Procedure 3.3,

we can use the following lemma:

Lemma A.1. No vertex besides the source vertex s can
have a p-voltage greater than all of its neighbors. Likewise,
no vertex besides the sink t can have a p-voltage less than
all of its neighbors.

Proof. We will prove the first statement by contradic-
tion, and the second will follow by similar logic. Assume
there is some non-source node u which has a p-voltage greater
than all of its neighbors. By definition, the set of p-voltages
minimizes equation (3) on the graph. However, if we lower
vu so that it is equal to the maximum p-voltage of its neigh-
bors, then all terms in (3) involving edges connected to u
will decrease, and no other terms will be affected. Thus, this
new set of voltages leads to a lower value of Cp(s, t), and the
original set of voltages could not be the set of p-voltages.

Note that this statement holds for the voltages calculated
from Rp(s, t) as well because the two sets of voltages are
proportional to each other. Thus, according to Lemma A.1,
every u �= s, t is connected to some vertex with greater or
equal p-voltage, and some vertex with less or equal p-voltage.
As a result, ties can always be resolved when constructing
Vsorted.

p-voltages outperforms Laplacian Regularization on 
all but one of the datasets. However, empirically the 
algorithm does not outperform the state-of-the-art
Iterated Laplacian algorithm.

Average Test Set Classification Error Percentage & Standard Error on
Chapelle Benchmark

A 3-d “barbell” graph is formed with two Gaussians connected by a cylinder. The voltages of 
a single labeled source node (red) and sink node (blue) are held fixed. The resulting voltages 
are shown as a spectrum from red (1) to blue (0).

PROBLEM WITH EXISTING METHOD

OUR CONTRIBUTIONS
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We disprove a conjecture from [1] which 
proposes that p-voltages can be used as a 
computationally convenient way to classify 
by p-resistances. That is, for all p > 1,

Theorem 2.
Consider the ratio      , which is the portion of the
total graph-wide change in p-voltage which occurs 
in region M. If M is a substantial region (defined in
the paper) for constant             , and                , 
then we know that				   .

Theorem 1.
If we define the following quantities,

then,To do this, we analyze a simple counter-
example graph (shown below) and note 
that in numerical experiments, the property
often does not hold for all nodes in the 
graph. However, we still advocate using the
p-voltages algorithm in its own right for
classification.

p-ELECTRIC NETWORKS AND THE p-VOLTAGES ALGORITHM

[1] M. Alamgir and U. von Luxburg. Phase transition in the 
family of p-resistances. NIPS 2011.
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That is, the maximum voltage drop in the 
local neighborhood of the source and sink 
points is negligible as the size of the graph 
grows. Thus, the solution does not have the 
spike problem.
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We prove that p-voltage solutions are well-formed with two theorems:
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Figure 2: Construction of G′

graph into “slices” of width 3R which run perpendicular to
the line connecting s and t, and merge all of the vertices in
each slice together. For a visualization of G′, see Figure 2.
First, we can lower bound the p-resistance contribution of

one of the ring regions, R
ring(s)
p (s, t). The number of ver-

tices in ring k, Nk, is proportional to n times the volume of
the ring. As shown in [3], Nk = Θ(τnk

d−2). Therefore, be-
tween rings k and k+1, there are Θ(Nkτn) edges in edge set

Ek. Denote by R
Ek
p (s, t) the contribution of the p-resistance

flowing between the rings. By the generalized mean inequal-
ity for values p and 1, we know that:
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where we used the fact that the flow between rings k and
k + 1 must be a unit flow because they form an s-t cut.
The p-resistance of all of the rings around s is simply the

sum of the contributions of all the rings.
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The rings around t have the same lower bound by symmetry.
Next, we can lower bound the p-resistance contribution of

one of the slices. Consider a single slice S. We say an edge
e is in ES if it has both endpoints in S. Denote by |ES | the
number of edges in ES . Then,
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p (s, t) =

∑
e∈ES

|ie|p
(a)

≥ 1

|ES |p−1


 ∑

e∈ES

|ie|




p

(b)

≥ 1

|ES |p−1

(19)
Step (a) is a result of the generalized mean inequality for

values p and 1, and step (b) results because slice S is a cross-
section of the whole graph G and so must have at least unit
total flow traveling through it.

Define by NS the number of vertices which fall at least R
distance from the boundaries of S. Since S has width 3R,
these vertices occupy a region of width R. We can upper
bound |ES | by NS times the maximum degree of the graph.

|ES | ≤ NS · dmax = Θ(nR)Θ(τn)

= Θ
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From (19) we have that:

RES
p (s, t) ≥ Θ




1(
n

d−1
d τ

d+1
d

n

)p−1


 (20)

There are on the order of K = Θ( 1
3R

) = Θ((n/τn)
1/d) of

these slices in the graph. Suppose region M contains some
number of slices such that it contains some fraction c of the
total K slices. That is, it contains cK slices, with 0 < c ≤ 1.
Using (20), we can see that:
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For convenience, we define a property of regions in which

we are interested.

Definition 3.5. A substantial region is one that is con-
structed according to Procedure 3.3, and which contains all
vertices in the rings around s or t as well as cK slices of the
graph as defined above.

If we have a substantial region M , then we know by (18)
and (21) that

RM
p (s, t) ≥ cT1 + T2 (22)

We are ready to prove our main result.

Theorem 3.6. Consider the ratio VM
V

, which is the por-
tion of the total graph-wide change in p-voltage which oc-
curs in region M . If M is a substantial region for constant
0 < c ≤ 1, and p < d
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Proof. If we examine the reciprocal of the ratio, and
use (14) and (22),
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where the numerator comes from the bound in Theorem 5
in [3]. When we let the number of vertices n → ∞,

V

VM
≤ 4C

cT1 + T2
+

T1 + T2

cT1 + T2
→ T1 + T2

cT1 + T2
≤ 1

c

since T1, T2 > 0. We can take the reciprocal to arrive at our
result: VM
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This result has significant implications. If we label the
graph with p-voltages using a suitable value for p, any sub-
stantial region will have significant voltage drop across it.

Using this theorem we can construct several different 
substantial regions in a graph and conclude that the 
voltage drop must be distributed throughout. Thus, 
the solution is not flat, either.

Contracted graph used to lower bound the p-resistance 
of the graph in the proof of Theorem 2.


