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Abstract

We propose density-ratio bagging (dragging), a semi-supervised extension of bootstrap aggregation
(bagging) method. Additional unlabeled training data are used to calculate the weight on each labeled
training point by a density-ratio estimator. The weight is then used to construct a weighted labeled
empirical distribution, from which bags of bootstrap samples are drawn. Asymptotically, dragging is
proved to be no worse than bagging and requires no semi-supervised learning assumptions other than
iid-ness. We show that compared to bagging, the dragging predictor achieves less asymptotic variance,
which leads to a smaller MSE. We conduct real experiments on several regression and classification tasks.
The performance of dragging, bagging, semi-supervised learning with density-ratio estimator, and basic
supervised learning is compared and discussed.

1 Introduction

In this paper, we propose density-ratio bagging(dragging), a semi-supervised extension of bootstrap aggrega-
tion(bagging) method. As a semi-supervised learning (SSL) method, dragging takes advantage of unlabeled
training data.

There are many existing SSL algorithms including mixture models, S3VMs, manifold learning, co-training,
etc. [1, 2]. For all those SSL algorithms, when their model assumption doesn’t hold, SSL may perform even
worse than supervised learning algorithms which simply ignore the unlabeled data. Recently, a safe SSL
algorithm called “SSL with density-ratio estimator” (DR-SSL) is proposed by Kawakita et al. [3]. As a safe
SSL method, it is proved to be no worse than supervised learning regardless of model assumptions. It is safe
in the sense that the parameter estimator used in DR-SSL always achieves the same or smaller asymptotic
variance.

Dragging applies the idea of DR-SSL to the bagging scenario. Bagging requires resampling from the
empirical distribution of the training data to create multiple bags. Similarly, dragging requires sampling
from the weighted empirical distribution. The weight is learned by a density-ratio estimator based on both
labeled and unlabeled training data.

Bagging and DR-SSL are quite different ideas. As an ensemble method, Bagging bootstraps multiple
bags and makes prediction by taking average of predictor for each bag. DR-SSL utilizes the unlabeled data
to improve the supervised l earner. However, their success can both be justified as the result of reducing
the asymptotic variance of the relevant predictor. Usually when the variance term dominates squared bias
term, less asymptotic variance leads to better Mean Square Error (MSE).

Dragging combines the advantages of bagging and DR-SSL together. We prove that dragging also achieves
less asymptotic variance than bagging. In other words, it is proved to be a safe extension of bagging as well.
Compared to DR-SSL, dragging is more flexible in choosing its learning algorithm. While DR-SSL requests
that the learning algorithm accept the weight for each training data, dragging resamples training points and
give them to the learner. Therefore, one can easily take dragging as a wrapper and use existing learning
algorithms as a black box.
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The paper is organized as follows: In section 2, we introduce DR-SSL and give its asymptotic analysis
result and explain its intuition. In section 3, we review why bagging works in theory via the asymptotic
analysis in [4]. We will formally define dragging and analyze its asymptotic behavior in section 4 and present
its advantages over bagging. Experiment result including regression and classification tasks on both synthetic
and real dataset are listed in section 5. In section 6, we summarize the property of dragging and present
future directions.

2 Review on SSL with Density-Ratio Estimator (DR-SSL)

2.1 Density Ratio Estimator

Let’s first introduce the density-ratio estimator in [3]. Suppose there are two unknown probability distribu-

tions p(x), q(x). One observe iid data sampled from them separately: xi
iid∼ p(x), x′i

iid∼ q(x). Density ratio
estimator directly estimates the density-ratio w(x) = q(x)/p(x) from those iid data. Assuming a parametric
model for density-ratio:

w(x; θ) = exp(θ1φ1(x) + . . .+ θrφr(x)) (1)

where φi(x) : X 7→ R, i = 1 . . . r are arbitrary functions of x, with the exception that φ1(x) = 1, and
θ1, . . . , θr are parameters to be estimated.

For SSL, {x1, . . . , xn} is the labeled data (removing the labels y) while {x′1, . . . , x′N} is the unlabeled
data. Usually n� N . Note both samples come from the same marginal distribution p(x) and hence the true
density-ratio w(x) = 1 everywhere. Nonetheless, one proceeds to estimate the density-ratio w(x) and uses
the estimate in building a classifier – paradoxically, this leads to better properties. Density ratio is estimated
by matching the empirical mean of certain sensing function η(x; θ) ∈ Rr on the labeled and unlabeled data,
i.e. solving the following equation:

1

n

n∑
i=1

η(xi; θ)w(xi; θ)−
1

N

N∑
j=1

η(x′j ; θ) = 0 (2)

The optimal choice of η(x; θ) is given by [5]

η(x; θ) =
1

1 + w(x; θ) ∗N/n
∇ logw(x; θ) =

1

1 + w(x; θ) ∗N/n
φ(x) (3)

Let θ̂ be a solution of equation (2), w(x; θ̂) is an estimator of w(x).

2.2 SSL with Density-Ratio Estimator (DR-SSL)

Density-ratio estimator is usually used in the covariate-shift situation where underlying marginal distributions
over X in training and test data are different. Interestingly, Sokolovska et al. [6] showed that density-ratio
can also be used in semi-supervised learning, where labeled data and unlabeled data share the same marginal
distribution.

Here is the problem setting for DR-SSL. Let X ⊂ Rd and Y be a finite label space. Let pXY be the

unknown underlying data generation distribution, and pX its marginal. Let (x1, y1), . . . , (xn, yn)
iid∼ pXY be

a labeled training set, and x′1, . . . , x
′
N

iid∼ pX be an unlabeled data set. Typically, N � n. The goal is to
estimate p(y|x) which can be further used for regression or classification. Consider the MLE of p(y|x) under
the model p(y|x, β)

1

n

n∑
i=1

u(xi, yi;β) = 0 (4)
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where u(xi, yi;β) is the score function. Let β̂ be a solution to the above equation. Asymptotic analysis of
Z-estimator suggests that: √

n(β̂ − β∗) d→ N(0, V1)

V1 = E[∇u]
−1

E[uuT](E[∇u]
−1

)T
(5)

Here, β∗ is the solution of the above equation in the asymptotic sense (where finite sum is replaced by
integral over the true pXY ). β∗ is called the best asymptotics, where p(y|x, β∗) is closest to the true p(y|x)
in KL-divergence sense. Note that in the well-specified case where p(y|x, β∗) = p(y|x), V1 becomes the
inverse of Fisher information matrix because I(θ) = −E[∇u] = E[uuT]. The whole asymptotic analysis
degenerates to the common asymptotic result of MLE estimator.

With the help of the additional unlabeled data, DR-SSL gives a better estimation β̃, which is the solution
to the following equation: 

1

n

n∑
i=1

w(xi; θ)u(xi, yi;β) = 0

1

n

n∑
i=1

η(xi; θ)w(xi; θ)−
1

N

N∑
j=1

η(x′j ; θ) = 0

(6)

Compared to MLE, the DR-SSL estimator β̃ has the same asymptotic mean β∗, but less asymptotic
variance: √

n(β̃ − β∗) d→ N(0, V2)

V2 = E[∇u]
−1

(E[uuT]−E[ūūT])(E[∇u]
−1

)T

ū = Ey|xu(x, y;β)

(7)

It is easy to verify that V2 ≤ V1, thus avar(β̃) ≤ avar(β̂). The equality holds if the model is well-specified,
namely p(y|x) = p(y|x, β∗). The reader is referred to [3] for detailed asymptotic analysis.

We can regard DR-SSL as weighted MLE, where the weight is calculated by density-ratio estimator
beforehand. The intuition is as follows: First denote the underlying marginal distribution of label data
as p(x), the underlying marginal distribution of unlabeled data as q(x). Note for common SSL settings
p(x) = q(x), here we distinguish them only for notation convenience. MLE only uses labeled data, while
DR-SSL uses unlabeled data to improve it. However, DR-SSL can’t use unlabeled data in MLE directly
since the MLE is to estimate p(y|x), but we don’t have the labels y for unlabeled data. We can instead
estimate p(x) and q(x) separately by kernel density estimation,denoted as p̂(x),q̂(x). Since unlabeled data
is plentiful, q̂(x) should be quite close to q(x). For each labeled point (xi, yi), if q̂(xi)/p̂(xi) > 1, it suggests
that (xi, yi) is under-represented, so we boost its weight up by q̂(xi)/p̂(xi). Similarly, if q̂(xi)/p̂(xi) < 1, we
decrease its weight by q̂(xi)/p̂(xi). Density-ratio SSL has the similar intuition mentioned above. However,
instead of calculating density estimators p̂(x) and q̂(x) separately, density-ratio estimator estimates their
ratio w(xi, θ) directly, and then plugs it in MLE as the weight.

3 Review on Bootstrap Aggregation (Bagging)

3.1 Definition of Bagging

Here is the theoretical definition of Bootstrap aggregation (bagging). Again consider a labeled training set

(x1, y1), . . . , (xn, yn)
iid∼ pXY . Bagging constructs bootstrap examples by sampling with replacement from

the empirical distribution of the labeled training set, where the bootstrap examples has the same size as
the original labeled training set (i.e., n). After that, bootstrap examples are used to learn predictors. The
bagged predictor is defined as the expectation of the bootstrap predictors. In practice, Monte Carlo method
is used to compute the expectation. First M different bags of bootstrap examples are sampled. The bagged
predictor is the average of the M bootstrap predictors which are trained separately based on each bag.
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We use the predictor trained with all training data together (called the base learner) as the baseline
comparison for bagging. Empirically, bagging has been well acknowledged to achieve better performance
than the base learner, especially when the base learner is unstable (w.r.t. random training data). Meanwhile,
theoretical investigations such as [4] give theoretical explanations on how bagging reduces the asymptotic
variance and mean squared error for some nonsmooth and unstable predictors.

3.2 Asymptotic Analysis of Bagging

Here is a brief summary of the analysis for variable selection via testing in linear model in [4]. Consider
a 1-dimension linear regression model Yi = βXi + εi with E[X2

i ] = 1, {εi} iid and independent from {Xi},
E[εi] = 0, V ar(εi) = σ2. The predictor is given as θ̂n(x) = β̂1[|β̂|>un]

x where un is suggested by t-test

at significance level β. Further assume the threshold un = un(c) = cσn−1/2, true parameter β = βn(b) =

bσn−1/2. In other words, we first compute the MLE β̂, then plug it in to get the predictor θ̂n(x).

The bagged predictor is defined as θ̂n;B = Eβ̂b

[
β̂b1[|β̂b|>un]

x
]

where β̂b is the MLE of parameter β for

each bag. Proposition 2.2 in [4] gives that the asymptotic distribution of the base predictor θ̂n(x) is:

n1/2σ−1θ̂n(x)
d→ g(Zb) = (Zb − Zb1[|Zb|≤c])x (8)

The asymptotic distribution of the bagged predictor θ̂n;B(x) is:

n1/2σ−1θ̂n;B(x)
d→ gB(Zb) = (Zb − {ZbΦ(c− Zb)− φ(c− Zb)− ZbΦ(−c− Zb) + φ(−c− Zb)})x (9)

where Zb = b+ Z, Z ∼ N(0, 1), and Φ(x), φ(x) are cdf and pdf of N(0, 1), respectively.
Simulations were performed to analyze the bias, variance, and MSE of the above two asymptotic distri-

butions. It was observed that for 1 < b < 3, the MSE reduction is substantial due to the variance reduction
of bagging. For most values of b, the bias effect plays negligible role in terms of MSE.

The crucial part of the analysis is based on two asymptotic normality, which will be extensively cited in
later section:

√
n(β̂ − β)

d→ N(0, σ2) (10)
√
n(β̂b − β̂)

d→ N(0, σ2) in probability (11)

Recall that β is the true parameter, β̂ is the MLE, βb is the estimator for each bag.
The first asymptotic normality follows the property of MLE, while the second one is usually mentioned

as the asymptotic normality of bagged estimator (or simply “bagging works”). The asymptotic normality of
bagged estimator are established for different models separately, see [7, 8]. Here is the intuition why bagging
works : For unstable predictors, the bagged predictor replaces them with a smoothed predictor and the
smoothed predictor leads to smaller variance. In the example above, the hard-threshold indicator function
is replaced by a soft-threshold function, with the help of convolution with a Gaussian distribution.

4 Density-Ratio Bootstrap Aggregation (Dragging)

4.1 Definition of Dragging

We are now prepared to define our dragging estimator. While bagging creates bootstrap samples by sampling
from the empirical distribution, dragging samples from the weighted empirical distribution. The weight
is the same weight used by weighted MLE in density-ratio SSL, which is calculated by the density-ratio
estimator [3]. Similar to density-ratio SSL, the weight is used to correct the labeled empirical distribution
with the help of the unlabeled data.

The setting for dragging is the same as density-ratio SSL: Let X ⊂ Rd and Y be a finite label space. Let

pXY be the unknown underlying data generation distribution, and pX its marginal. Let (x1, y1), . . . , (xn, yn)
iid∼

4



pXY be a labeled training set, and x′1, . . . , x
′
N
iid∼ pX be an unlabeled data set. Typically, N � n. Our drag-

ging procedure is defined in 4 steps:

1. Learn the density ratio estimator w(x, θ) in the same way as the second line of equation (6).

2. Create M bags of bootstrap samples Bk = {Bki(x, y), i = 1 . . . n}, k = 1 . . .M from the labeled training
set by sampling with replacement. Instead of sampling from the labeled empirical distribution, dragging
samples each point Bki(x, y) from the weighted labeled empirical distribution P̂L,w(x, y), where

P̂L,w(x, y) =

∑n
i=1 1(x = xi, y = yi)w(xi, θ)∑n

i=1 w(xi, θ)
(12)

3. Learn M predictors based on the M bags separately.

4. The dragging predictor is the average over the M predictors.

Note that the density-ratio estimator is calculated only once before the bags are created in step 1, so all
M bags sample from the same weighted empirical distribution.

Dragging and density-ratio SSL share the same key idea. As the first step, Density-ratio SSL and Dragging
both calculate the density-ratio w(x, θ),where unlabeled data are utilized. While density-ratio SSL uses the
weight to formulate weighted MLE, dragging uses the weighted labeled empirical distribution as the source
probability for bagging sampling. In other words, dragging is a semi-supervised extension of bagging in the
same way that density-ratio SSL extends MLE. Since density-ratio SSL has been proven to outperform MLE,
we could expect dragging to outperform bagging estimator as well. On the other hand, because bagging is
not necessarily always better than the MLE learner, we don’t always expect dragging to outperform either
density-ratio SSL or MLE.

4.2 Asymptotic Properties of Dragging

There are two relevant asymptotic normality result for dragging. First, the asymptotic normality of density-
ratio SSL [3]. Based on equation (7), we have:

√
n(β̃ − β∗)→ N(0, V2). (13)

Second, the dragging asymptotic normality (“Dragging works”) :

√
n(β̃b − β̃)→ N(0, V1) (14)

where β̃ is DR-SSL, β̃b is the dragging estimator for each bag, and β∗ is the best asymptotics.
Let’s further discuss the second one, “dragging asymptotic normality” (dragging works). Regarding the

asymptotic mean, because each bag in dragging is sampled from the weighted empirical labeled distribution,
the asymptotic mean should be DR-SSL β̃. Regarding the asymptotic variance, interested readers may ask
why the asymptotic variance here is V1 instead of V2 ( V2 ≤ V1). Here is one explanation. The asymptotic
variance is introduced by the uncertainty of labeled training data. In DR-SSL, the weight for each labeled
point is corrected by the density-ratio estimator,which leads to variance reduction. However, in the dragging
procedure, density-ratio is calculated before the bags are created. So variance reduction only happen in
equation (10) but not in equation (11).

Actually, If one really wants it to be V2, the weight of the labeled training data for each bag needs to
be corrected separately (which means M density-ratio estimator should be calculated separately). However,
we design dragging not to reduce asymptotic variance in equation (11) on purpose. The reason is that such
variance is crucial for bagging’s success. Recall the intuition for why bagging work – we need the expectation
over this asymptotic distribution in equation (11) to create the soft-threshold predictor.
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4.3 Case Study of Dragging Predictors

Now let’s see how these two asymptotic normalities lead to superior performance of dragging over bagging
in a particular task, namely variable selection via testing in linear model in Section 3.2. We use the same
model for prediction, but now we assume the ground-truth model is no longer linear. In other words, our
model assumption is mis-specified. Thus density-ratio SSL is guaranteed to have less asymptotic variance
than the MLE (i.e. V2 < V1).

Consider the 1-dimension linear regression model Yi = βXi+εi, with E[X2
i ] = 1, {εi} iid and independent

from {Xi}, E[εi] = 0, and V ar(εi) = σ2. Similar to proposition 2.2 in [4], we have the following result for
DR-SSL

θ̃n(x) = β̃1[|β̃|>un]
x

and dragging predictor

θ̃n;B = Eβ̃b

[
β̃b1[|β̃b|>un]

x
]
.

Next, we will compare the asymptotic distribution of four predictors :

1. MLE or base predictor θ̂n(x)

2. bagged predictor θ̂n;B(x)

3. DR-SSL θ̃n(x)

4. dragging θ̃n;B(x).

Recall the asymptotic variance for MLE (base predictor) and DR-SSL, respectively:

V1 = E[∇u]
−1

E[uuT](E[∇u]
−1

)T (15)

V2 = E[∇u]
−1

(E[uuT]−E[ūūT])(E[∇u]
−1

)T (16)

Note that for the mis-specified model, V1 6= σ2. un is suggested by t-test at significance level α. Further
assume the threshold un = un(c) = c

√
V1n

−1/2, best fit parameter β∗ = βn(b) = b
√
V1n

−1/2. The asymptotic
distribution of the density-ratio predictor θ̃n(x) is:

n1/2(
√
V 1)−1θ̃n(x)

d→ g(Zb) = (Zb − Zb1[|Zb|≤c])x (17)

The asymptotic distribution of the dragging predictor θ̃n;B(x) is:

n1/2(
√
V 1)−1θ̃n;B(x)

d→ gB(Zb) = (Zb − {ZbΦ(c− Zb)− φ(c− Zb)− ZbΦ(−c− Zb) + φ(−c− Zb)})x (18)

where Zb = b + Z, Z ∼ N(0, ρ), ρ = V2

V1
< 1 and Φ(x), φ(x) are cdf and pdf of N(0, 1), respectively. Recall

that the asymptotic distribution for the base predictor θ̂n has almost the same formula as density-ratio SSL
predictor θ̃n, but with ρ = 1. Similarly, the asymptotic distribution for the bagging predictor θ̂n,B has

almost the same formula as dragging predictor θ̃n,B , but with ρ = 1.
Now we run simulation to compare the asymptotic distributions of these four predictors in terms of their

bias, variance and MSE. Figure 1 simulates the predictors for x = 1, c = 1.96, V1 = 1, ρ = 0.8. Here are some
observations:

1. Dragging outperforms bagging: The dragging predictor always has smaller variance than the bagging
predictor. In terms of squared bias, the dragging predictor is slightly worse than bagging. In terms of
MSE, since variance dominates the squared bias, dragging outperforms bagging.

2. Dragging outperforms MLE and DR-SSL: Most of time (1 ≤ b ≤ 3), the dragging predictor has the
smallest variance among the four predictors. Dragging also outperforms the base and density-ratio
SSL predictor in squared bias. For 1 ≤ b ≤ 3, dragging has the smallest MSE among the 4 predictors.
However, this is probably owing to the fact that “variable selection via testing in linear model” is a
bagging-friendly task. In general, we don’t expect dragging to always beat MLE and DR-SSL.
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Figure 1: Simulations of asymptotic distributions

5 Experiments

5.1 Datasets and Algorithms

We want to compare the base learner, density-ratio (if possible), bagging, and dragging predictors. Our
tasks include both regression and classification. Our datasets include:

1. Bagging friendly synthetic datasets: Friedman 1,2,3

2. Density-ratio friendly synthetic dataset: DR-SSL1 in Section 7.1 of [3]

3. SSL friendly datasets: g241.c ,g241.n, Digit1

4. UCI datasets: Boston housing, breast cancer Wisconsin, diabetes, ionosphere, spambase, abalone, cmc

We use multiple regression and classification algorithms for the base learner, including

1. Classification: SVM, Classification tree, logistic regression, Random forest

2. Regression: Linear regression, Regression tree, Random forest

Note that random forest is used as base learner, we can still have bagging as the wrapper as usual. We adopt
Kernel unconstrained least-squares importance fitting (KulSIF) [9] as the standard density-ratio estimator
and use it in the density-ratio SSL predictor and the dragging predictor.

5.2 Procedure

For simplicity, we only consider one base learner Alg, and one dataset D. We experimented with different
training set sizes for the labeled and unlabeled data. The procedure is as follows.

1. Input: a set of labeled-set sizes {L1, ..., Lmax}, unlabeled-set size U

2. Randomly sample training set Dtrain of size Lmax+U from the data set. The rest of the data are used
as test data Dtest

3. For each L,U size pair:

(a) Run M trials. For each trial:

i. Sample L data from Dtrain, denoted as DL

ii. Sample U data from Dtrain −DL, denoted as DU
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iii. With training data DL and DU , learn base learner, density-ratio, bagging, and dragging,
separately. Inside training, cross validation is used to choose parameters of algorithms.

iv. Evaluate the four learners on Dtest,i.e. calculate Loss(Dtest, learner). We use 0/1 loss for
classification, MSE for regression

(b) Take the average of Loss in M trials

For the following regression and classification tasks, we used M = 10 (for classification), 100( for regression);
L = 10 and 100; U = 1000 (if the dataset is not large enough, U = 300). We made sure that |Dtest| > 200.
We used 5-fold cross-validation.

5.3 Results

Table 1 presents the regression experiment results. It contains 5 datasets and 3 algorithms. For each
algorithm-dataset pair, we ran experiments with label data size = 10 and 100. We list the regression mean
square error (MSE) for base learner(base), DR-SSL(dr), bagging(bag), and dragging(drag). Each number
is the average over 10 trials. We mark the smallest MSE among the four in bold. In addition, we list the
p-value of one-side t-test between dragging and bagging. Note that smaller p-value means dragging is better
than bagging.

Table 2 presents the classification experiment results. It contains 9 datasets and 4 algorithms. The
number listed are test set classification error, the structure is the same as in Table 1.

Here are some observations and discussion:

1. DR-SSL vs base: We don’t always see DR-SSL being better than the base learner. But DR-SSL is
better in the smaller L situation. This coincides with our intuitive explanation of DR-SSL, where
labeled empirical distribution is corrected by unlabeled data. With smaller L, it makes more sense to
make such a correction. Recall that the proof of DR-SSL uses asymptotics. So in practice, we may
observe that DR-SSL is worse than the base learner.

2. Bagging vs base: Bagging is not always better than the base learner. For certain algorithms (regression
tree, classification tree), bagging is much better. This follows from the theory that bagging helps
unstable learner.

3. Dragging vs bagging: From the p-value listed, we don’t always see dragging being better than bagging.
But we note that whether dragging is better than bagging highly depends on whether DR-SSL is better
than the base learner. In the regression experiments, among the 12 cases where DR-SSL is better than
the base learner, there are 10 cases where dragging is better than bagging. On the other hand, among
the 8 cases where DR-SSL is worse than the base learner, there are 3 cases where dragging is worse
than bagging. However, in classification experiments, such a dependence is not observed.

4. Dragging vs all other three: It is hard to say that dragging is the best among the four algorithms.
Dragging is a combination of density-ratio SSL and bagging ideas. Although these two ideas have
some theoretical guarantee in certain situation, but in practice we don’t always see either of them
work. Therefore, we don’t see dragging always works either.

6 Conclusion

This paper proposes density-ratio aggregation (dragging), a semi-supervised ensemble method. Dragging
improves bagging by sampling from the weighted empirical distribution, where the weight is calculated by
density-ratio estimator with the help of unlabeled data. Asymptotic normality of dragging is discussed
and used to prove the asymptotic behavior of a particular learning task. We see how dragging reduces
the asymptotic variance of bagging, and thus leads to smaller MSE. Real experiments on a wide range of
classification and regression tasks indicate the success of dragging compared to bagging to a limited degree.
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Regression Tree Linear regression Random Forest
Dataset l base dr bag drag p-value base dr bag drag p-value base bag drag p-value

Friedman1
10 31.240 31.611 21.700 21.582 0.140 21.974 21.979 19.363 19.361 0.486 22.761 23.359 23.308 0.099
100 14.070 13.990 9.169 9.221 0.883 7.342 7.310 7.369 7.335 0.001 12.660 13.385 13.408 0.967

Friedman2
10 2.997e5 2.986e5 2.245e5 2.182e5 0.002 2.192e5 2.173e5 2.394e5 2.356e5 0.219 2.197e5 2.214e5 2.194e5 0.125
100 1.551e5 1.566e5 1.271e5 1.275e5 0.822 1.246e5 1.245e5 1.248e5 1.245e5 0.043 1.382e5 1.382e5 1.382e5 0.402

Friedman3
10 1.009 1.012 0.828 0.819 0.076 0.839 0.829 0.836 0.848 0.886 0.758 0.750 0.755 0.872
100 0.686 0.685 0.665 0.665 0.214 0.644 0.644 0.646 0.645 0.225 0.649 0.646 0.646 0.277

Boston housing
10 76.617 82.301 58.792 58.421 0.303 92.517 92.923 84.667 98.310 0.953 57.908 60.115 61.268 0.941
100 29.195 29.399 20.683 20.712 0.584 26.376 25.978 26.288 25.940 0.000 27.631 29.198 29.256 0.888

DR-SSL1
10 1.946 1.912 1.325 1.229 0.000 0.359 0.352 0.315 0.246 0.000 1.039 1.125 1.072 0.000
100 0.505 0.494 0.352 0.355 0.842 0.217 0.211 0.211 0.151 0.000 0.320 0.334 0.336 0.965

Table 1: Benchmark regression comparison results. All numbers are averages over 10 trials.

SVM Classification Tree Logistic regression Random Forest
Dataset l base dr bag drag p-value base dr bag drag p-value base dr bag drag p-value base bag drag p-value

breast cancer
10 0.049 0.050 0.047 0.048 0.861 0.111 0.111 0.135 0.114 0.172 0.196 0.192 0.208 0.222 0.716 0.048 0.047 0.050 0.946
100 0.043 0.046 0.042 0.044 0.959 0.080 0.077 0.055 0.055 0.429 0.126 0.143 0.130 0.151 0.996 0.044 0.041 0.044 0.974

diabetes
10 0.333 0.336 0.331 0.327 0.068 0.398 0.355 0.357 0.314 0.139 0.405 0.424 0.417 0.423 0.771 0.337 0.331 0.322 0.207
100 0.328 0.268 0.258 0.254 0.166 0.294 0.286 0.265 0.254 0.065 0.335 0.335 0.335 0.333 0.161 0.250 0.248 0.247 0.383

ionosphere 10 0.306 0.306 0.315 0.314 0.339 0.256 0.256 0.227 0.230 0.828 0.301 0.301 0.302 0.309 0.992 0.283 0.283 0.285 0.714

spambase
10 0.322 0.343 0.324 0.353 0.823 0.288 0.287 0.284 0.326 0.955 0.320 0.320 0.331 0.365 0.972 0.253 0.253 0.298 0.941
100 0.137 0.166 0.134 0.155 1.000 0.170 0.192 0.120 0.134 0.980 0.146 0.161 0.147 0.170 0.998 0.097 0.101 0.103 0.854

abalone
10 0.380 0.381 0.386 0.382 0.308 0.358 0.339 0.347 0.348 0.542 0.380 0.380 0.382 0.375 0.280 0.350 0.342 0.326 0.168
100 0.250 0.251 0.251 0.253 0.848 0.298 0.294 0.263 0.264 0.542 0.255 0.254 0.252 0.253 0.698 0.261 0.259 0.260 0.842

cmc
10 0.421 0.422 0.420 0.419 0.310 0.399 0.402 0.406 0.405 0.466 0.437 0.434 0.426 0.415 0.064 0.411 0.411 0.412 0.536
100 0.366 0.367 0.350 0.355 0.791 0.367 0.369 0.336 0.339 0.846 0.416 0.412 0.410 0.408 0.324 0.352 0.352 0.356 0.940

g241.c
10 0.447 0.444 0.485 0.482 0.172 0.486 0.494 0.469 0.471 0.697 0.377 0.378 0.386 0.386 0.500 0.473 0.478 0.477 0.296
100 0.247 0.246 0.232 0.235 0.790 0.427 0.434 0.344 0.350 0.768 0.239 0.239 0.237 0.237 0.500 0.290 0.288 0.285 0.285

g241.n
10 0.487 0.487 0.489 0.487 0.199 0.480 0.483 0.491 0.487 0.045 0.454 0.454 0.456 0.455 0.052 0.492 0.498 0.494 0.117
100 0.288 0.287 0.273 0.270 0.161 0.453 0.463 0.392 0.391 0.479 0.276 0.276 0.268 0.267 0.390 0.338 0.335 0.336 0.541

Digit1
10 0.324 0.324 0.326 0.320 0.048 0.452 0.452 0.457 0.460 0.956 0.267 0.267 0.272 0.267 0.142 0.428 0.433 0.441 0.901
100 0.094 0.095 0.086 0.085 0.375 0.247 0.251 0.145 0.148 0.688 0.090 0.090 0.085 0.084 0.348 0.076 0.086 0.085 0.468

Table 2: Benchmark classification comparison results. All numbers are averages over 10 trials.

Further work includes (i) giving a theoretical proof of the dragging asymptotic normality assumption, and
(ii) a more thorough investigation about when dragging outperforms bagging in practice.
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[4] Peter Bühlmann and Bin Yu. Analyzing bagging. Annals of Statistics, 30:927–961, 2002.

[5] Jing Qin. Inferences for case-control and semiparametric two-sample density ratio models. Biometrika,
85(3):619–630, 1998.
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