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Abstract

We investigate a topic at the interface of machine learning and cognitive science.
Human active learning, where learners can actively query the world for informa-
tion, is contrasted with passive learning from random examples. Furthermore,
we compare human active learning performance with predictions from statistical
learning theory. We conduct a series of human category learning experiments
inspired by a machine learning task for which active and passive learning error
bounds are well understood, and dramatically distinct. Our results indicate that
humans are capable of actively selecting informative queries, and in doing so
learn better and faster than if they are given random training data, as predicted
by learning theory. However, the improvement over passive learning is not as dra-
matic as that achieved by machine active learning algorithms. To the best of our
knowledge, this is the first quantitative study comparing human category learning
in active versus passive settings.

1 Introduction

Active learning is a paradigm in which the learner has the ability to sequentially select examples
for labeling. The selection process can take advantage of information gained from previously ob-
served labeled examples in order to accelerate the learning process. In contrast, passive learning is
a paradigm in which the learner has no control over the labeled examples it is given. In machine
learning, active learning has been a topic of intense interest. In certain machine learning problems
it has been shown that active learning algorithms perform much better than passive learning, with
superior convergence bounds (see [1, 4] and references therein) and/or superior empirical perfor-
mance [5, 19]. In this paper we focus on the application of active learning to classification, in both
machines and humans.

To our knowledge, no previous work has attempted to quantify human active learning performance
in probabilistic category learning (i.e., classification), contrast human active and passive learning,
and compare against theoretically optimal theory bounds. Theories of human category learning
often cast the learner as a passive learner, who observes some object (typically represented as a
feature vector), is presented with the object’s category label, and does some statistical processing to
determine how the label should generalize. Anyone who has ever interacted with a three-year-old
will recognize that this scenario is exceedingly unrealistic in at least one respect. Certainly toddlers
observe their environment, and certainly they pay attention when adults label objects for them – but
they also ask a lot of questions. Active querying provides children with information that they would
otherwise be less likely to encounter through passive observation; and so, presumably, such active
querying has important implications for category learning.

Early research in human concept attainment suggested that learners do benefit from the opportunity
to actively select examples during learning [11]. However, it proved very difficult to establish cri-
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Figure 1: The two-category learning
task with boundaryθ and noise levelε.

Figure 2: Probabilistic bisection strategy. Shaded areas
have1/2 probability mass.

teria for assessing the magnitude of the active learning benefit (e.g., compared to theoretical ideals,
or to passive learning). Partly as a result, nearly all contemporary research in classification and
categorization has ignored active learning. Furthermore, a rich literature on decision-making and
scientific inference has produced conflicting claims regarding people’s capacities to select optimal
learning examples [7, 10, 12, 13, 14, 15, 16, 17, 20]. Most famously, people make inappropriate
queries to assess simple logical hypotheses such as “ifp thenq” (frequently examiningq instances
to see if they arep, and failing to explore not-q instances [20]). Several authors have argued that
pessimistic views of the human ability to choose relevant queries are based on faulty task analyses;
and that, when the learning task is properly construed, humans do an excellent, even optimal job of
selection [7, 14]. As much of the debate in the psychological literature turns on task analysis and the
proper metric for assessing performance, there is significant opportunity to benefit from the formal
descriptions characteristic of machine learning research. The current study exploits one such analy-
sis of a relatively simple binary classification task with fixed error rate in feedback. Specification of
the theoretical benefits of active learning in this context allows us to address the following questions
regarding human performance:
[Q1] Do humans perform better when they can select their own examples for labeling, compared to
passive observation of labeled examples?
[Q2] If so, do they achieve the full benefit of active learning suggested by statistical learning theory?
[Q3] If they do not, can machine learning be used to enhance human performance?
[Q4] Do the answers to these questions vary depending upon the difficulty of the learning problem?

The goal of this paper is to answer these questions in a quantitative way by studying human and
machine performance in one well-understood classification task. Answers to these questions have
important theoretical and practical implications for our understanding of human learning and cog-
nition. As previously noted, most theories of human category learning assume passive sampling
of the environment. Some researchers have argued that the environment provides little information
regarding the category structure of the world, and so conclude that human category learning must
be subject to strong initial constraints [6, 3, 9]. If, however, human learning benefits from active
querying of the environment, it is not clear that such conclusions are justified. From an applied
perspective, if machines can be shown to aid human learning in certain predictable circumstances,
this has clear implications for the design of intelligent tutoring systems and other machine-human
hybrid applications.

2 A Two-Category Learning Task

For the study in this paper we consider learning in a relatively simple setting, where there is a good
theoretical understanding of both active and passive machine learning, offering an ideal test-bed for
assessing active learning in humans. The task is essentially a two-category learning problem (binary
classification) in the interval[0, 1]. Let θ ∈ [0, 1] be the unknown but fixed decision boundary. To
the left ofθ the category is “zero” and to the right ofθ the category is “one.” The goal of the learning
task is to inferθ as accurately as possible from a set of examples. The training data (set of examples)
consists ofn sample and label pairs;{(Xi, Yi)}n

i=1, whereXi ∈ [0, 1] andYi ∈ {0, 1}. The label
Yi is related to the sampleXi in the following noisy way:Yi is equal to the category ofXi with
probability1 − ε and equal to the other category with probabilityε, where0 ≤ ε < 1/2. In other
words, each label more probably is correct than incorrect, andε is the probability of an incorrect
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label1. Note that the labelYi is simply a noisy answer to the question “isXi larger thanθ?” Figure 1
illustrates this model. Furthermore assume that, givenXi, Yi is statistically independent of{Yj}j 6=i.

At this point we have not specified how the sample locationsXi are generated, and in this lies the
major difference between passive and active learning. In the passive learning setting the sample
locations are randomly distributed, independent of the labels. On the other hand, in the active
learning setting the learner can choose the sample locations in a sequential way depending on the
past, that isXi = h(X1, . . . , Xi−1, Y1, . . . , Yi−1) , whereh is a (possibly random) function that
takes into account past experiences and proposes a new queryXi.

If ε = 0, that is when there is no label noise, the optimal methodologies for passive and active
learning are quite obvious. In passive learning, the optimal inference is thatθ lies somewhere
between the rightmost location where a label of zero was observed and the leftmost location where a
label of one was observed. If then sample locations are (approximately) evenly distributed between
0 and1, then the error of the inference is on the order of1/n. On the other hand, in active learning
the optimal strategy is a deterministic binary bisection: begin by takingX1 = 1/2. If Y1 = 0, then
θ > 1/2, otherwiseθ ≤ 1/2. SupposeY1 = 1, then the next sample point isX2 = 1/4 and if
Y2 = 1, thenθ < 1/4 otherwiseθ ≥ 1/4. Proceeding in this fashion we see that the length of the
interval of possible values ofθ is halved at every observation. Therefore aftern samples the error
of the active learning inference is at most2−(n+1). Clearly active learning, where the error decays
exponentially with the number of samples, is much better than passive learning, where the error can
decay only polynomially.

If ε > 0 there is uncertainty in our label observation process and estimatingθ becomes more del-
icate. Under passive learning, the maximum likelihood estimator yields the optimal rate of error
convergence. Furthermore it is possible to show a performance lower bound that clarifies what is
the best possible performance ofanypassive learning algorithm. In particular we have the following
result.

inf
θ̂n

sup
θ∈[0,1]

E[|θ̂n − θ|] ≥ 1
4

(
1 + 2ε

1− 2ε

)2ε 1
n + 1

, (1)

whereθ̂n is the estimate ofθ obtained aftern observations, and the infimum is taken overall possible
passive learning procedures. This is a so-called minimax lower bound, and gives an indication of the
best achievable performance of any passive learning algorithm. That is, no passive algorithm can
learn more rapidly. This bound can be easily shown using Theorem 2.2 of [18], and the performance
of the maximum likelihood estimator is within a constant factor of (1).

For active learning, deterministic bisection cannot be used due to the label noise. Nevertheless
active learning is still extremely beneficial in this setting. Horstein [8] proposed a method that is
suitable for our purposes. The key idea stems from Bayesian estimation. Suppose that we have a
prior probability density functionp0(·) on the unknown parameterθ, namely thatθ is uniformly
distributed over the interval[0, 1]. To make the exposition clear let us assumeθ = 1/4. Like
before, we start by making a query atX1 = 1/2. With probability1 − ε we observe the correct
labelY1 = 1, and with probabilityε we observe the incorrect labelY1 = 0. SupposeY1 = 1 was
observed. Given these facts we can update the posterior density by applying Bayes rule. In this case
we obtainp1(t|X1, Y1) = 2(1 − ε) if t ≤ 1/2, or 2ε if t > 1/2. The next step is to choose the
sample locationX2. We chooseX2 so that itbisectsthe posterior probability mass, that is, we take
X2 such thatPrt∼p1(·)(t > X2|X1, Y1) = Prt∼p1(·)(t < X2|X1, Y1). In other wordsX2 is just the
median of the posterior distribution. We continue iterating this procedure until we have collectedn

samples. The estimatêθn is then defined as the median of the final posterior distribution. Figure 2
illustrates the procedure. Note that ifε = 0 then this probabilistic bisection is simply the binary
bisection described above.

The above algorithm works extremely well in practice, but it is hard to analyze. In [2] a slightly
modified method was introduced, which is more amenable to analysis; the major difference involves

1We use a constant noise levelε because the theoretical distinction between active and passive learning is
dramatic in this case. Other (perhaps more natural) noise models are possible, for exampleε can decrease away
from the true class boundary. Noise models like this are well understood theoretically [4]; we will investigate
them in future work.
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Figure 3: A few 3D visual stimuli and theirX values used in our experiment.

a discretization of the possible query locations. For this method it can be shown [2] that

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2

(√
1
2

+
√

ε(1− ε)

)n

. (2)

Note that the expected estimation error decays exponentially with the number of observations, as
opposed to the polynomial decay achievable using passive learning (1). This shows that the accuracy
of active learning is significantly better than passive learning, even under the presence of uncertainty.
Furthermore no active (or passive) learning algorithm can have their expected error decaying faster
than exponentially with the number of samples, as in (2).

3 Human Passive and Active Learning Experiments

Equipped with the theoretical performance of passive learning (1) and active learning (2), we now
describe a behavioral study designed to answer Q1-Q4 posed earlier. The experiment is essentially
a human analog of the abstract learning problem described in the previous section in which the
learner tries to find the boundary between two classes defined along a single dimension, a setting
used to demonstrate semi-supervised learning behavior in humans in our previous work [21]. We
are particularly interested in comparing three distinct conditions:

Condition “Random” . This is the passive learning condition where the human subject cannot
select the queries, and is instead presented sequentially with examples{Xi}n

i=1 sampled uniformly
at random from[0, 1], and their noisy labels{Yi}n

i=1. The subject is regularly asked to guess the
boundary from these observations (without feedback). As in (1), the expected estimation error
|θ̂n − θ| of an optimal machine learning algorithm decreases at the rate1/n. If humans are capable
of learning from passive observation of random samples, their boundary estimates should approach
the true boundary with this polynomial rate too.
Condition “Human-Active” . This is the active learning condition where the human subject, at
iterationi, selects a queryXi based on her previous queries and their noisy labels{(Xj , Yj)}i−1

j=1.
She then receives a subsequent noisy labelYi. If humans are making good use of previously collected
examples by selecting informative queries then the rate of error decrease should be exponential,
following (2).
Condition “Machine-Yoked” . This is a hybrid human-machine-learning condition in which the
human passively observes samples selected by the active learning algorithm in [2], observes the
noisy label generated in response to each query, and is regularly asked to guess, without feedback,
where the boundary is – as though the machine is teaching the human. It is motivated by question
Q3: Can machine learning assist human category learning?

Materials. Each sampleX is a novel artificial 3D shape displayed to the subject on a computer
screen. The shapes change withX smoothly in several aspects simultaneously. Figure 3 shows a few
shapes and theirX values. A difference of 0.06 inX value corresponds roughly to the psychological
“Just Noticeable Difference” determined by a pilot study. For implementation reasons our shapes
are discretized to a resolution of about 0.003 inX values, beyond which the visual difference is too
small to be of interest.

Participants. Participants were 33 university students, participating voluntarily or for partial course
credit. They were told that the 3D shapes are alien eggs. Spiky eggs (X close to 0) most likely hatch
alien snakes (category zero), and smooth eggs (X close to 1) most likely hatch alien birds (category
one), but there could be exceptions (label noise). Their task was to identify as precisely as possible
the egg shape (decision boundary) at which it switches from most likely snakes to most likely birds.

4



Procedure. Each participant was assigned one of the three conditions: Random (13 subjects),
Human-Active (14 subjects), Machine-Yoked (6 subjects). Machine-Yoked receives approximately
half the number of other groups, as pilot studies indicated that performance was much less variable in
this condition. In all conditions, subjects were explicitly informed of the one dimensional nature of
the task. The participant first completed a short practice session to familiarize her with the computer
interface and basic task, followed by 5 longer sessions of 45 iterations each. The noise levelε, which
determines the difficulty of the learning task, varied across sessions, taking the values 0, 0.05, 0.1,
0.2, 0.4 with order determined randomly for each participant. For each session and participant the
true decision boundaryθ was randomly set in[1/16, 15/16] to avoid dependencies on the location
of the true boundary. The experiment thus involved one between-subject factor (learning condition)
and one within-subjects factor (noise levelε).

At iterationi of the learning task, a single shape atXi was displayed on a CRT monitor at a normal
viewing distance. In the Human-Active condition, the participant then used a computer mouse
wheel to scroll through the range of shapes. Once the participant found the shape she wished to
query (Xi+1), she clicked a “hatch” button and observed the outcome (bird or snake, corresponding
to the noisy label), followed by a “Continue” button to move on to the next query. In the Random
and Machine-Yoked conditions, each sampleXi+1 was generated by the computer with no user
intervention, and a short animation was displayed showing shapes smoothly transitioning fromXi

to Xi+1 in order to match the visual experience in the Human-Active condition. Once the transition
was completed, the outcome (label) forXi+1 was observed, and participants clicked a “Continue”
button to observe the next sample and outcome. In all conditions, the computer generated the noisy
labelYi+1 according to the true boundaryθ and noise levelε, and displayed it to the participant with
either a snake picture (Yi+1 = 0) or a bird picture (Yi+1 = 1). The display was reset to the initial
shape after ever 3 queries to ensure that participants paid attention to the precise shape corresponding
to their estimate of the boundary location rather than simply searching locally around the current
shape (total 15 re-starts over 45 queries; 45 re-starts would be too tedious for the subjects).

The participant was asked to guess the decision boundary (θ̂) after every three iterations. In these
“boundary queries,” the computer began by displaying the shape atX = 1/2, and the participant
used the mouse wheel to change the shape until it matched her current best guess about the boundary
shape. Once satisfied, she clicked a “submit boundary” button. We thus collectθ̂3, θ̂6, θ̂9, . . . , θ̂45

for each session. These boundary estimates allowed us to compute mean (across subjects) human
estimation errors|θ̂n − θ| for differentn, under different conditions and different noise levels. We
compare these means (i) across the different experimental conditions and (ii) to the theoretical pre-
dictions in (1)(2).

4 Experimental Results

Figure 4 shows, for each condition and noise level, how every participant’s boundary guesses ap-
proach the true boundaryθ. Qualitatively, human active learning (Human-Active) appears better
than passive learning (Random) because the curves are more concentrated around zero. Machine-
assisted human learning (Machine-Yoked) seems even better. As the task becomes harder (larger
noiseε), performance suffers in all conditions, though less so for the Machine-Yoked learners. These
conclusions are further supported by our quantitative analysis below.

It is worth noting that the behavior of a few participants stand out in Figure 4. For example, one
subject’s boundary guesses shift considerably within a session, resulting in a rather zigzagged curve
in (Human-Active,ε = 0.1). All participants, however, perform relatively well in at least some
noise settings, suggesting that they took the experiment seriously. Any strange-looking behavior
likely reflect genuine difficulties in the task, and for this reason we have not removed any apparent
outliers in the following analyses. We now answer questions Q1–Q4 raised in Section 1.

[Q1] Do humans perform better when they can actively select samples for labeling compared
to passive observation of randomly-selected samples?
[A1] Yes – at least for low noise levels. For higher noise the two are similar.
To support our answer, we show that the human estimation error|θ̂n − θ| is smaller in the Human-
Active condition than Random condition. This is plotted in Figure 5, with±1 standard error bars.
When noise is low, the Human-Active curve is well below the Random curve throughout the session.
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Figure 4: Overview of experiment results. Thex-axis is iterationn, y-axis is the (signed) difference
between human boundary guess and true boundaryθ̂n−θ. Each curve shows performance from one
human subject (though they overlap, it is sufficient to note the trends). Overall, human active learn-
ing (Human-Active) is better than passive learning (Random), and machine-assisted human learning
(Machine-Yoked) is even better. As the task becomes harder (larger noiseε), all performances suffer.
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Figure 5: Human estimate error|θ̂n − θ| under different conditions and noise levels. Thex-axis is
iterationn. The error bars are±1 standard error. Human-Active is better than Random when noise
is low; Machine-Yoked is better than Human-Active when noise is high.

That is, with active learning the subjects quickly come up with better guesses and maintain this ad-
vantage till the end. Human-Active performance deteriorates with higher noise levels, however, and
at the highest noise levels is appears indistinguishable from performance in the Random condition.

[Q2] Can humans achieve the full benefit of active learning suggested by learning theory?
[A2] Human active learning does have exponential convergence, but with slower decay con-
stants than the upper bound in (2). Human passive learning, on the other hand, sometimes
does not even achieve polynomial convergence as predicted in(1), and in no condition does the
rate approach optimal performance.
To support these conclusions, consider that, for active learning, the theoretical estimation er-
ror bound in (2) has the form2e−λn and decays exponentially withn. The decay constant

λ = −1/2 log
(
1/2 +

√
ε(1− ε)

)
is determined by the noise levelε. The larger the decay con-

stant, the faster the error approaches zero. If one plotslog of the bound vs.n, it would be a line with
slope−λ. To determine whether human error decays exponentially as predicted, and with a compa-
rable slope, one can similarly plot the logarithm ofhuman active learningestimation error vs.n. If
human active learning decreases error exponentially (which is desirable), this relationship is linear,
as Figure 6 (Upper) shows it to be. This exponential decay of error offers further evidence that hu-
man active learning exceeds passive learning performance, where error can only decay polynomially
(Figure 6, Lower). The speed (decay constant) of the exponential decay in human active learning is,
however, slower than the theoretical upper bound (2). To see this, we fit one line per noise level in

6



10 20 30 40−5

−4

−3

−2

−1
noise !=0.00

10 20 30 40−5

−4

−3

−2

−1
noise !=0.05

10 20 30 40−5

−4

−3

−2

−1
noise !=0.10

10 20 30 40−5

−4

−3

−2

−1
noise !=0.20

10 20 30 40−5

−4

−3

−2

−1
noise !=0.40

0 2 4−5

−4

−3

−2

−1
noise !=0.00

0 2 4−5

−4

−3

−2

−1
noise !=0.05

0 2 4−5

−4

−3

−2

−1
noise !=0.10

0 2 4−5

−4

−3

−2

−1
noise !=0.20

0 2 4−5

−4

−3

−2

−1
noise !=0.40

Figure 6: (Upper) Human active learning decreases error exponentially, as indicated by the linear
distribution oflog(|θ̂n − θ|) (they-axis) versusn (thex-axis). (Lower) Human passive learning in
the Random condition is slower thanO(1/n), since the slopes are shallower than -1 onlog(|θ̂n−θ|)
(they-axis) versuslog(n) (thex-axis).

ε = 0 0.05 0.1 0.2 0.4
Human-Active 0.031 0.042 0.037 0.030 0.005

bound (2) 0.347 0.166 0.112 0.053 0.005

Table 1: The exponential decay constants of human active learning is slower than predicted by
statistical learning theory for lower noise levels.

Figure 6 and use the negative slope of the fitted lines as the estimate of the decay constant in human
active learning. For comparison, we computed the decay constant in the theoretical bound. Table 1
compares these decay constants under different noise levels. It is clear that human active learning’s
error decays at a slower rate, especially when the noise is low.

For passive learning, the minimax lower bound (1) has a polynomial decay ofO(1/n), which is a
line with slope -1 on a plot oflog(|θ̂n−θ|) vs. log(n). As shown in Figure 6 (Lower), the analogous
log-log plot from human passive learning in the Random condition does seem to fit a line, but the
slope is much shallower than -1. Indeed, for 2 of the 5 noise levels (0.1 and 0.2), the estimated slope
is not significantly different from zero! These results suggest that humans either fail to learn or learn
at a much lower rate than formal analysis suggests is possible.

[Q3] Can machine learning be used to enhance human learning?
[A3] Apparently in high noise levels – But what really happened?
As shown in Figure 5, the Machine-Yoked curve is no different than Human-Active in low noise
levels, but substantially better in high noise levels. It is important to remember that Machine-Yoked
is human performance, not that of the machine learning algorithm. The results seem to indicate that
humans can utilize the training data chosen by a machine active learning algorithm to enhance their
performance in settings where humans are not generally performing well. Upon closer inspection,
however, we noticed that almost all subjects in the Machine-Yoked condition used the following
strategy. They quickly learned that the computer was generating training examples that soon con-
verge to the true boundary. They then simply placed their boundary guess at (or near) the latest
training example generated by the machine. This “memorizing” strategy worked very well in our
setting, but it is difficult to believe that the subjects were really “learning” the decision boundary.
Instead, they likely learned to trust and depend upon the computer. In view of this, we consider
Q3 inconclusive, but hope these observations provoke thoughts on how to actually improve human
learning.

[Q4] Do answers to the above questions depend upon the difficulty of the learning task?
[A4] One form of difficulty, the label noise levelε, has profound effects on human learning.
Specifically, the advantage of active learning diminishes with noise; and at high noise levels active
learning arguably has no advantage over passive learning for humans in this setting. Formal analysis
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suggests that the advantage of active over passive sampling should diminish with increasing noise;
but it also suggests that some benefit to active sampling should always be obtained. An important
goal for future research, then, is to understand why human performance is so adversely affected by
noise.

5 Conclusions and Future Work

We have conducted behavioral experiments to compare active versus passive learning by humans in a
simple classification task, and compared human performance to that predicted by statistical learning
theory. In short, humans are able to actively select queries and use them to achieve faster category
learning; but the advantages of active-learning diminish under higher noise conditions and do not
approach theoretical bounds. One important conclusion from this work is that passive learning may
not be a very good model for how human beings learn to categorize. Our research also raises several
interesting further questions, including how the current conclusions extend to more realistic learning
scenarios. The benefit of the current work is that it capitalizes on a simple learning task for which
passive and active performance has been formally characterized. The drawback is that the task is
not especially natural. In future work we plan to extend the current approach to learning situations
more similar to those faced by people in their day-to-day lives.
Acknowledgments:This work is supported in part by the Wisconsin Alumni Research Foundation,
and NSF Grant 0745423 from Developmental Learning Sciences.
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