
bbAbstract

We introduce to cognitive psychology a standard tool in machine
learning, namely, the Rademacher complexity of the human mind
(or, technically, the set of binary classification functions our mind
can entertain). Rademacher complexity measures the mind’s
ability to fit random labels, and thus is a novel measure of human
learning capacity. Furthermore, Rademacher complexity can be
used to bound a human learner’s true error based on her training
sample error.

For machine learning researchers, our work serves as a novel and
intuitive application of Rademacher complexity and its
generalization error bound. It is another example that machine
learning and human learning can be studied under the same
mathematical principles.
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bRademacher Complexity

X: a domain (i.e., stimulus space) with marginal distribution PX
x1, …, xn ~ PX: instances
F={ f: X R}: a set of functions
Rademacher complexity measures the capacity of F.

Definition: For a set of real-valued functions F with domain X, a
distribution PX on X, and a size n, the Rademacher complexity is

where the expectation is over training sample x= x1, …, xn ~ PX, and
the {-1, 1}-valued random labels =1, …, n ~ Bernoulli(0.5, 0.5).

Comments:
1. Intuition: if for any random training sample (x, ), there

always exists f  F such that f(x) strongly correlates with the
random labels , then F is rich and has high capacity.

2. Rademacher complexity remains the same for different
classification or regression tasks on X that one might define
(i.e., it is insensitive to intended labels y).

3. Rademacher complexity can be estimated by approximating
the expectation with sample-average on (x, ).

b
The Rademacher Complexity 

of the Human Mind

Let F=Ha be the set of binary classification functions on X that the
human mind has access to. That is, any f  Ha defines a particular
way a subject categorizes x  X into label f(x)  {-1, 1}. We are
interested in the Rademacher complexity of Ha. However, Ha is
implicit and as a whole unobservable; the sup operation cannot be
done explicitly. We propose a “learning the noise” procedure:

1. On a sheet of paper, show n random training instances (x1,
1)…, (xn , n) to a participant for three minutes. The
participant is informed that there are only two categories, that
order doesn’t matter, that they will use what they learned to
categorize more instances.

2. The sheet is taken away; Perform a filler task.
3. The participant is given another sheet with x1, …, xn in a

different order, and asked to categorize them. They do not
know these are the same instances in step 1. No time limit.
Let their classification labels be f*(x1) … f*(xn).

Assumption:
Averaging over m participants:

Human Rademacher complexity on two domains from 80 subjects:

Observations:
1. R decreases with n.
2. The Word domain has higher R.
3. Post-interviews reveal some participants’ f*

a) Mnemonics.  Training instances (grenade, B), (skull, A), (conflict, 
A), (meadow, B), (queen, B),  “a queen was sitting in a meadow 
and then a grenade was thrown (B = before), then this started a 
conflict ending in bodies & skulls (A = after).”

b) Idiosyncratic and imperfect rules: whether the item “tastes 
good,” “relates to motel service,” or “physical vs. abstract.”

Bounding Human Generalization Error

Consider any binary categorization task with joint probability PXY
The observed training sample error of f:
The true error of f:

Rademacher complexity can bound the “amount of overfitting”
(Bartlett & Mendelson): with probability at least 1-, every function
f  F satisfies

In particular, the bound holds for the classifier f* used by a human.
Meaning: if the RHS is large, good training performance may not
guarantee good test performance.

Example tasks: same domain, but different classification goals.
Shape-+ WordEmotion (pos/neg)
Shape-+- WordLength (>5)

Same procedure, except replacing random  with true label y, and
step 3 containing n training and 100 test instances. 40 subjects.
The bound always holds: (=0.05)

Furthermore, the bound and the actual amount of overfitting agree
on the trend:

A few overfitting f*:
 Subject 102 “anything related to 

emitting light”
 Subject 111 “things you can go 

inside”
 Subject 114 “odd number of 

syllables”

This work is supported in part by AFOSR grant FA9550-09-1-0313 and the 
Wisconsin Alumni Research Foundation.


