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ABSTRACT edges reflect similarity between nodes: the edge waight
. " . . . between nodes;, z; is large ifd(x;, ;) is small. A com-
In this position paper, we first review the state-of-the-art N on choice of edges is to connect each node toNINS with

ﬁﬁ?;}g?:igafzg'sgﬁi Lvlgﬁd rlslg\r/zlr?tgt,o?:SItiFr)r?ler:jti;;:n;Tr- eight 1, and disconnect it from all other nodes (weight 0).
P y Y'Let W be the(n + m) x (n + m) weight matrix, andD
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assumgd smoothpgn the manifold We then discussgnew direc- _.W be the u.nnormalized graph Laplacian matrix (the nor-
tions in semi-supervised learning .research that can potential allzegl LaplaciaD~!/2LD~1/2 can be used, too): Lg.tbe ,
overcome these limitations: (i) modeling data as a mixture o function on the graph. Then the graph assumption is equiv-
) i L < ~ ~alent to having a smaénergyf " Lf = 1/2Y. .(f(z;) —
multiple manifolds that may intersect or overlap; (ii) online N J
semi-supervised learning that learns incrementally with low/ (%3))wij-
computation and memory needs; and (iii) learning spectrally ~ This assumption is behind graph-based semi-supervised
sparse but non-smooth labels with compressive sensing. Weethods such as Mincut [3], graph random walk [4], Gaussian
give concrete examples in each new direction. We hope thigandom Fields [5], local and global consistency [6], spec-
article will inspire new research that makes semi-supervisetial graph transducer [7], manifold regularization [8, 9], and

learning an even more valuable tool for multimedia analysismany other variants. In particular, Belkin et al. generalize
graph-based learning to the manifold setting, wh&res as-

"sumed to be a low dimensional manifoldR?, the labelsy
change smoothly on the manifold, and the graph constructed
on labeled and unlabeled training data is a random realization

1. STATE-OF-THE-ART IN GRAPH-BASED of the manifold. This provides an elegant conceptual model.

SEMI-SUPERVISED LEARNING AND LIMITATIONS The graph-based assumption has been extended to directed

edges like links between Web pages [10] and dissimilarity

Semi-supervised learning encompasses many different modediges [11, 12]. Applications of graph-based semi-supervised

assumptions [1, 2]. Graph-based semi-supervised learning lisarning abound.

an important family of methods that make the following com-  pegpite their success, we point out three major limitations

mon assumption. Let;,z; € X be two input items, and of graph-based methods:

yi,y; € Y be their labels. Usually¥ € R” and) =

—1, 1} for binary classification, but multiclass classification ) i .
(=11} y or multiple well-separated manifolds. Therefore, it makes

and regression are common, too. Hét -) be an appropriate X .
distance measure oli. The graph-based assumption statesser,]sﬁttc()j crgate the_graﬂzﬁ US)EQI?NN tzadgesh, or;;aus_smn
that if d(x;, ;) is small, theny; ~ y,. This assumption ap- \l;velgde eE gel%ﬂ _(;Xf (- (Tﬂgb%)th)’ where ("'L'S q
plies regardless of whether, «; are labeled. If; is labeled, ased on tuclidean distance. In both cases, nearvy nodes

and er s Secenceofibeld oy sch 7 00 conecen and s sesuned i hve s
thatd(z;, z,41) is small fori = 1... %k — 1, then the label; : ' y

will propagate along the sequence jects might form multiple manifolds that intersect or partially

. : . overlap with each other. For example, in motion segmenta-
Formally, a graph is formed with nodes being labeled dat"fllon from video images, the tracked feature points on differ-
{(;,y:)}1—, and unlabeled datfr;}!*" . The undirected ges, b

ent objects form multiple intersecting and overlapping mani-
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Index Terms— semi-supervised learning, multi-manifold
online learning, compressive sensing, graph

(1) Current methods assume thtis a single manifold,




ifolds may not satisfy this assumption. Straightforward appli-
cation of existing graph-based semi-supervised learning will
not achieve optimal performance.

(2) Current methods learn in batch mode. That is, they
require the training set to be available all at once. However,
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consider a robot with a camera that continuously takes video 0 %0 10 10 0 %0 e 1o

of its surroundings, and learns the names of various objects. () Dollar sign (b) Surface-helix
A human annotator provides object names (labels) only oc-
casionally on selected video frames. This is therefore semi-
supervised learning. But the robot cannot afford to store the
massive amount of mostly unlabeled video before learning.
It requires an “anytime classifier” that is ready at all times, ) . R . .
while continuously improving itself. And training must be ©* @y (z,2") = (z — 2') "X (z — 2’). The neighborhood
cheap and quick. What we need is semi-supervised learnirjjz€ ¥ is set to grow with dataset size. The graph edges are
that operates in online mode. welghted using the standard RBF scheme,_but Wlth_ Hellinger
(3) Current methods assume label smoothness on tHiStance:wi; = exp (—AH?(p,q)). See Figure 3 in [16]
graph. As dissimilarity edges show, this may not always bdO" @ €xample graph using this weighting scheme. In short,
the case [11, 12]. In general, the relation between the lab&l® 9raph combines locality and geometry: an edge has large
and the underlying graph can be studied from the perspecti\}'éfe'ght when the t_W(? nodes are close in Mahalanobis d's’_'
of harmonic analysis. It is well-known that the traditional tance_, and have S|m|I_ar covariance structure. I_mportan_tly, it
smoothness assumption is equivalent to favoring low fre_effecuvely separates intersecting and overlapping manifolds

quency components of the graph spectrum [14]. Recerft© individual pieces.
advances in compressive sensing (see, e.g., [15]) allow learn- We demonstrate the effectiveness of this Hellinger graph
ing from an arbitrary combination of low and high frequencywith manifold regularization [8] on two synthetic datasets.
components, as long as the number of components is smabollar sign is a regression dataset containing two intersect-
We present, to our knowledge, the first connection betweeimg manifolds with target values varying greatly across in-
compressive sensing and graph-based transduction. tersection points (Figure 1(a), color indicatgs Surface-
helix is a classification dataset with a 1D toroidal helix in-
tersecting a surface—each manifold is a separate class (Fig-
2. MULTI-MANIFOLD LEARNING ure 1(b)). Figure 1 compares three learners on these datasets:
) _ _ Supervised} supervised learner (kernel regression or SVM)
We recently introduced a novel graph as a first step in adgained on labeled data only, ignoring unlabeled di%R] :
dressing data containing a mixture of manifolds [16]. Thegtangard manifold regularization (LapRLS or LapSVM) using
idea is to assign edge weights based on differences in locgl g,clidean-based 3NN graph [8]Hellinger-MR] : man-
geometry around each item Our intuition is that items ifo|g regularization (LapRLS or LapSVM) using this novel
on different manifolds, or in regions with different density, Hellinger graph. See [16] for details about the parameters
should be considered dissimilar and lead to low edge Weight@overning the Hellinger graph. All other parameters were
Computationally, we compare local regions using Hellingerneq ysing 5-fold cross validation. All datasets start with
distance, which is sensitive to local manifold structures. Wey; _ 20,000 unlabeled items, from which we seleet ~
start by estimating the local sample covariance malkjx O(M/log(M)) anchor items. Figure 1 shows performance
around a randomly selected set of anchor itemsThen, o 5 separate test set of 20,000 items, averaged over 10 trials.
the squared Hellinger distance between tW2° anchor pointSyr the dollar sign data, standard MR performs only as well
z;,x; is H3(p,q) = %f (1/p(x) — /q(aj)) dz, where as supervised learning, while Hellinger-MR achieves statisti-
cally significantly better MSE in all foun conditions (based

p = N(2;0,%;,) andg = N(x;0,%,,) are zero mean ’ :
Gaussians with those local sample covariance matrices. TI Pairedi-tests). For the surface-helix data, the three meth-

Hellinger distancel is symmetric, in[0, 1], small when the ods_are all statistipally significantly different for all with

local geometry is similar, and large when there is significanti€llinger-MR making the best use of unlabeled data.
difference in density, manifold dimensionality or orientation =~ Open issues surrounding our Hellinger graph remain, in-
(see Figure 2 in [16]). Finally, we build a sparsdN graph  cluding how to select anchors, and how to optimize parame-
over the labeled and anchor unlabeled items as follows: Eadiers. Furthermore, some other metrics over matrices or prob-
suchz is connected by a weighted, undirected edge t& its ability distributions may be more appropriate than Hellinger
nearest Mahalanobis neighbors. Note that, sgeaptures  distance for this purpose. Finally, it could be useful to exploit
the local geometry around, we “follow the manifold” by the labeled data for detecting and validating the presence of
using the Mahalanobis distance as the local distance metric atultiple manifolds with differing target values.

Fig. 1. Multi-manifold learning with Hellinger-graphs.



manifold structure. Given the same space constraint, it is bet-

500 0.15
g a0 . ter to form a summary of all the input so far. One possibility
g0 % ' is some form of online clustering that forms a mixture model
g / g (e.g., Gaussian mixtures) on the input, using a fixed number
- ~ 0 of mixing components, as in Figure 2(right). A “hyper-graph”

0
0 500 0000 0 5600 10000 can then be maintained on the mixture model, with nodes be-

ing the components. Graph-based learning proceeds on the
hyper-graph, which is a fixed-size summary of the manifold
seen so far. This is the idea behind the use of Random Projec-
tion Trees in [17]; see also [18].

3. ONLINE SEMI-SUPERVISED LEARNING Looklng fOfo'ird, We- need mo_re efficient online semi-
supervised algorithms with theoretical guarantees. The com-

We argue that the following is an important and practical setbination of online semi-supervised learning and online active
ting, especially for real-time multimedia applications: learning also deserves attention.

Fig. 2. Online semi-supervised learning

1. Attimet an adversary pickér;, y;) and shows,.
2. The learner predictf (x:).
3. With (small) probabilityp the adversary revealg;.

4. LEARNING NON-SMOOTH LABELS ON GRAPHS

The spectrum of the graph is the set of eigenvalue, eigenvector

OtherWiseth remains .Unlab9|.ed. pairS{()\i, z/}l)};z;rlm, where the Laplacialii _ Zl )\lwlw:
4. The qurner updates |t§ predictorfia 1, even wheny; |t we sort \ from small to large, thel; = ... = A, =
is not given. Repeat with= 7 + 1. 0 if and only if the graph ha# disconnected components.

This is clearly online learning. It differs from the standard on-1 "€ €igenvectord” = {y;} form an orthonormal basis. Any
line setting in that learning happens even on unlabeled datir9et label function on the graph can be decomposed into
The goal is to updatg; in such a way that there is no regret, / = 2_; @i%i» Wherey, corresponds to the lowest frequency
i.e., the wrong predictions the online procedure makes ovefoMPonent, ang,, .., the highest frequency compor12ent. The
time are comparable to a batch learner, which has access t§1ction’s energy can be shown to _yjéLf =D Aoy

the same inpusimultaneouslyout has to use the single best _ EXisting semi-supervised learning algorithms assume that
fixed predictor. A good online semi-supervised learning al- 1S Smooth with respect to the graph. This is equivalent to

gorithm should achieve zero regret with sublinear space arf@eSuming large (non-zera)s for smallz, and small (zeroy's
time complexity. for larges. In the future, one may wish to allow non-smooth

As a concrete example, our online semi-supervised a|l_abelsf to model richer data, which must still be learnable
gorithm in [17] employs online convex programming with from a small number of'labeled points. Compre;sive sensing
an asymptotic zero-regret guarantee. At the heart of thaffers such guaranteeffis spectrally sparse, i.e., if onlyy <
algorithm is a gradient step in kernel spafie; = f, — "+m of thea’s are non-zero. Thesgnon-zero components

. . can occupy any frequency, thus allowing non-smaoptand
ny 22:40) " wherer, is a stepsize that decays @$1//%). Py any irequency 9 b

of |y, generalizing the graph smoothness assumption.
The termJ.(f) is theinstantaneous riskunctional. When Our key insight is thatransductive learning on graphs
summing over time, we recover the standard batch manifoldorresponds to compressive sensing usingthem) x (n+
regularization risk/(f) = ——>7"\" J;(f). The defini- m) canonical basisb = I. Then x (n + m) sensing ma-

tion of J,(f) can be found in [17]; suffice it to say that the trix consists of» random rows selected frod. The sensing
instantaneous graph energy Zsjﬁ;i(f(xi) — f(x¢))?w;;.  matrix simply reads out the label valuesramnodes; these
That is, it involves the edges from, to all previous nodes correspond to the labeled data items. Importantly, when the
in the graph. However, its complexity grows linearly with graph is “nice,” i.e., without small (nearly) disconnected com-
t. One approximation is to use a buffer of fixed size ponents, the graph spectrum basiss incoherent with the
%Zf;th(f(xi) — f(xy))*wy. That is, old nodes fromr  canonical basi®. This allows the exact recovery of the whole
steps ago are discarded. Figure 2 compares batch vs. onlificfrom then observations when > Cu?(®, ¥)S log(n +
semi-supervised learning (manifold regularization)’s runningn), whereu(®, V) = /n + mmax; ; |¢,; 1,| is the coher-
time and test error on MNIST digit recognition 1 vs. 2. Theence (the lower the better).
online algorithm achieves a desirable constant learning com- We now give a concrete example. Consider a closed chain
plexity at each step, and has comparable accuracy as batghaph (i.e., aring) witm+m = 1024 nodes and edge weights
mode. 1. The graph spectruni is the discrete Fourier basis, whose
Keeping a fixed buffer of recent input is not optimal ulti- coherence with the canonical basis\i€. LetS = 3, and
mately. The dynamic graph constructed on items in the buffef = —5 — 1.3vg + 63, Which is spectrally sparse yet non-
only reflects a random and noisy snapshot of the underlyingmooth as shown in Figure 3(left). We takeneasurements
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Fig. 3. Compressive sensing on a closed-chain graph

5]

(6]

[7]

from the canonical basis (i.e., select labeled items); thus we

have labelg, = f on thosen random nodes. We then solve

the standard, minimization problem to recovey (thusf on
the whole graph). We vary from 1 to 60. For each we
run 100 trials; each takesrandom rows fromd to form the

(8]

sensing matrix. For each trial, we compute the recovery error

7 = fllea/|lflle,. Each trial is a dot in Figure 3(right). It

seems exact recovery happens when 35 for this graph.

Much work remains in improving this novel way of per-

9]

forming transduction on a graph. Potential research direc-

tions include: identifying real-world problems with spectrally

sparse labels on graphs, finding bases that are more local-

ized than the Laplacian spectrum yet still incoherent with thd10]

canonical sensing basis, and studying label acquisition mech-
anisms when the sensing basis is not canonical (e.g., random

[11] Andrew Goldberg, Xiaojin Zhu, and Stephen Wright,

matrices).

5. CONCLUSIONS

We have presented three new research directions for grap

2

based semi-supervised learning and our initial approaches at
solving these novel problems. We hope this article will inspire13]
new research, making semi-supervised learning an even more

valuable tool for multimedia analysis.
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