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ABSTRACT

In this position paper, we first review the state-of-the-art in
graph-based semi-supervised learning, and point out three
limitations that are particularly relevant to multimedia analy-
sis: (1) rich data is restricted to live on a single manifold; (2)
learning must happen in batch mode; and (3) the target label is
assumed smooth on the manifold. We then discuss new direc-
tions in semi-supervised learning research that can potentially
overcome these limitations: (i) modeling data as a mixture of
multiple manifolds that may intersect or overlap; (ii) online
semi-supervised learning that learns incrementally with low
computation and memory needs; and (iii) learning spectrally
sparse but non-smooth labels with compressive sensing. We
give concrete examples in each new direction. We hope this
article will inspire new research that makes semi-supervised
learning an even more valuable tool for multimedia analysis.

Index Terms— semi-supervised learning, multi-manifold,
online learning, compressive sensing, graph

1. STATE-OF-THE-ART IN GRAPH-BASED
SEMI-SUPERVISED LEARNING AND LIMITATIONS

Semi-supervised learning encompasses many different model
assumptions [1, 2]. Graph-based semi-supervised learning is
an important family of methods that make the following com-
mon assumption. Letxi, xj ∈ X be two input items, and
yi, yj ∈ Y be their labels. Usually,X ⊆ RD andY =
{−1, 1} for binary classification, but multiclass classification
and regression are common, too. Letd(·, ·) be an appropriate
distance measure onX . The graph-based assumption states
that if d(xi, xj) is small, thenyi ≈ yj . This assumption ap-
plies regardless of whetherxi, xj are labeled. Ifx1 is labeled,
and there is a sequence of unlabeled itemsx2, . . . , xk such
thatd(xi, xi+1) is small fori = 1 . . . k − 1, then the labely1
will propagate along the sequence.

Formally, a graph is formed with nodes being labeled data
{(xi, yi)}n

i=1 and unlabeled data{xi}n+m
i=n+1. The undirected
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edges reflect similarity between nodes: the edge weightwij

between nodesxi, xj is large if d(xi, xj) is small. A com-
mon choice of edges is to connect each node to itskNNs with
weight 1, and disconnect it from all other nodes (weight 0).
Let W be the(n + m) × (n + m) weight matrix, andD
the diagonal degree matrix withDii =

∑
j wij . Let L =

D−W be the unnormalized graph Laplacian matrix (the nor-
malized LaplacianD−1/2LD−1/2 can be used, too). Letf be
a function on the graph. Then the graph assumption is equiv-
alent to having a smallenergyf>Lf = 1/2

∑
i,j(f(xi) −

f(xj))2wij .

This assumption is behind graph-based semi-supervised
methods such as Mincut [3], graph random walk [4], Gaussian
Random Fields [5], local and global consistency [6], spec-
tral graph transducer [7], manifold regularization [8, 9], and
many other variants. In particular, Belkin et al. generalize
graph-based learning to the manifold setting, whereX is as-
sumed to be a low dimensional manifold inRD, the labelsy
change smoothly on the manifold, and the graph constructed
on labeled and unlabeled training data is a random realization
of the manifold. This provides an elegant conceptual model.
The graph-based assumption has been extended to directed
edges like links between Web pages [10] and dissimilarity
edges [11, 12]. Applications of graph-based semi-supervised
learning abound.

Despite their success, we point out three major limitations
of graph-based methods:

(1) Current methods assume thatX is a single manifold,
or multiple well-separated manifolds. Therefore, it makes
sense to create the graphW usingkNN edges, or Gaussian
weighted edgeswij = exp

(
−λd(xi, xj)2

)
, whered(·, ·) is

based on Euclidean distance. In both cases, nearby nodes
are strongly connected and are assumed to have similar la-
bels. However, in multimedia data, the distribution of ob-
jects might form multiple manifolds that intersect or partially
overlap with each other. For example, in motion segmenta-
tion from video images, the tracked feature points on differ-
ent objects form multiple intersecting and overlapping mani-
folds [13]. Even though each individual manifold obeys the
label smoothness assumption, nearby items on different man-



ifolds may not satisfy this assumption. Straightforward appli-
cation of existing graph-based semi-supervised learning will
not achieve optimal performance.

(2) Current methods learn in batch mode. That is, they
require the training set to be available all at once. However,
consider a robot with a camera that continuously takes video
of its surroundings, and learns the names of various objects.
A human annotator provides object names (labels) only oc-
casionally on selected video frames. This is therefore semi-
supervised learning. But the robot cannot afford to store the
massive amount of mostly unlabeled video before learning.
It requires an “anytime classifier” that is ready at all times,
while continuously improving itself. And training must be
cheap and quick. What we need is semi-supervised learning
that operates in online mode.

(3) Current methods assume label smoothness on the
graph. As dissimilarity edges show, this may not always be
the case [11, 12]. In general, the relation between the label
and the underlying graph can be studied from the perspective
of harmonic analysis. It is well-known that the traditional
smoothness assumption is equivalent to favoring low fre-
quency components of the graph spectrum [14]. Recent
advances in compressive sensing (see, e.g., [15]) allow learn-
ing from an arbitrary combination of low and high frequency
components, as long as the number of components is small.
We present, to our knowledge, the first connection between
compressive sensing and graph-based transduction.

2. MULTI-MANIFOLD LEARNING

We recently introduced a novel graph as a first step in ad-
dressing data containing a mixture of manifolds [16]. The
idea is to assign edge weights based on differences in local
geometry around each itemx. Our intuition is that items
on different manifolds, or in regions with different density,
should be considered dissimilar and lead to low edge weights.
Computationally, we compare local regions using Hellinger
distance, which is sensitive to local manifold structures. We
start by estimating the local sample covariance matrixΣx

around a randomly selected set of anchor itemsx. Then,
the squared Hellinger distance between two anchor points

xi, xj is H2(p, q) = 1
2

∫ (√
p(x)−

√
q(x)

)2

dx, where

p = N (x; 0,Σxi) and q = N (x; 0,Σxj ) are zero mean
Gaussians with those local sample covariance matrices. The
Hellinger distanceH is symmetric, in[0, 1], small when the
local geometry is similar, and large when there is significant
difference in density, manifold dimensionality or orientation
(see Figure 2 in [16]). Finally, we build a sparsekNN graph
over the labeled and anchor unlabeled items as follows: Each
suchx is connected by a weighted, undirected edge to itsk
nearest Mahalanobis neighbors. Note that, sinceΣx captures
the local geometry aroundx, we “follow the manifold” by
using the Mahalanobis distance as the local distance metric at
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Fig. 1. Multi-manifold learning with Hellinger-graphs.

x: d2
M (x, x′) = (x − x′)>Σ−1

x (x − x′). The neighborhood
sizek is set to grow with dataset size. The graph edges are
weighted using the standard RBF scheme, but with Hellinger
distance:wij = exp

(
−λH2(p, q)

)
. See Figure 3 in [16]

for an example graph using this weighting scheme. In short,
the graph combines locality and geometry: an edge has large
weight when the two nodes are close in Mahalanobis dis-
tance, and have similar covariance structure. Importantly, it
effectively separates intersecting and overlapping manifolds
into individual pieces.

We demonstrate the effectiveness of this Hellinger graph
with manifold regularization [8] on two synthetic datasets.
Dollar sign is a regression dataset containing two intersect-
ing manifolds with target values varying greatly across in-
tersection points (Figure 1(a), color indicatesy). Surface-
helix is a classification dataset with a 1D toroidal helix in-
tersecting a surface—each manifold is a separate class (Fig-
ure 1(b)). Figure 1 compares three learners on these datasets:
[Supervised]: supervised learner (kernel regression or SVM)
trained on labeled data only, ignoring unlabeled data.[MR] :
standard manifold regularization (LapRLS or LapSVM) using
a Euclidean-based 3NN graph [8].[Hellinger-MR] : man-
ifold regularization (LapRLS or LapSVM) using this novel
Hellinger graph. See [16] for details about the parameters
governing the Hellinger graph. All other parameters were
tuned using 5-fold cross validation. All datasets start with
M = 20, 000 unlabeled items, from which we selectm ∼
O(M/log(M)) anchor items. Figure 1 shows performance
on a separate test set of 20,000 items, averaged over 10 trials.
For the dollar sign data, standard MR performs only as well
as supervised learning, while Hellinger-MR achieves statisti-
cally significantly better MSE in all fourn conditions (based
on pairedt-tests). For the surface-helix data, the three meth-
ods are all statistically significantly different for alln, with
Hellinger-MR making the best use of unlabeled data.

Open issues surrounding our Hellinger graph remain, in-
cluding how to select anchors, and how to optimize parame-
ters. Furthermore, some other metrics over matrices or prob-
ability distributions may be more appropriate than Hellinger
distance for this purpose. Finally, it could be useful to exploit
the labeled data for detecting and validating the presence of
multiple manifolds with differing target values.
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Fig. 2. Online semi-supervised learning

3. ONLINE SEMI-SUPERVISED LEARNING

We argue that the following is an important and practical set-
ting, especially for real-time multimedia applications:

1. At time t an adversary picks(xt, yt) and showsxt.
2. The learner predictsft(xt).
3. With (small) probabilityp the adversary revealsyt.

Otherwisext remains unlabeled.
4. The learner updates its predictor toft+1, even whenyt

is not given. Repeat witht = t+ 1.

This is clearly online learning. It differs from the standard on-
line setting in that learning happens even on unlabeled data.
The goal is to updateft in such a way that there is no regret,
i.e., the wrong predictions the online procedure makes over
time are comparable to a batch learner, which has access to
the same inputsimultaneouslybut has to use the single best
fixed predictor. A good online semi-supervised learning al-
gorithm should achieve zero regret with sublinear space and
time complexity.

As a concrete example, our online semi-supervised al-
gorithm in [17] employs online convex programming with
an asymptotic zero-regret guarantee. At the heart of the
algorithm is a gradient step in kernel spaceft+1 = ft −
ηt

∂Jt(f)
∂f

∣∣∣
ft

, whereηt is a stepsize that decays asO(1/
√
t).

The termJt(f) is the instantaneous riskfunctional. When
summing over time, we recover the standard batch manifold
regularization riskJ(f) = 1

n+m

∑n+m
t=1 Jt(f). The defini-

tion of Jt(f) can be found in [17]; suffice it to say that the
instantaneous graph energy is

∑t−1
i=1(f(xi) − f(xt))2wit.

That is, it involves the edges fromxt to all previous nodes
in the graph. However, its complexity grows linearly with
t. One approximation is to use a buffer of fixed sizeτ :
t
τ

∑t−1
i=t−τ (f(xi) − f(xt))2wit. That is, old nodes fromτ

steps ago are discarded. Figure 2 compares batch vs. online
semi-supervised learning (manifold regularization)’s running
time and test error on MNIST digit recognition 1 vs. 2. The
online algorithm achieves a desirable constant learning com-
plexity at each step, and has comparable accuracy as batch
mode.

Keeping a fixed buffer of recent input is not optimal ulti-
mately. The dynamic graph constructed on items in the buffer
only reflects a random and noisy snapshot of the underlying

manifold structure. Given the same space constraint, it is bet-
ter to form a summary of all the input so far. One possibility
is some form of online clustering that forms a mixture model
(e.g., Gaussian mixtures) on the input, using a fixed number
of mixing components, as in Figure 2(right). A “hyper-graph”
can then be maintained on the mixture model, with nodes be-
ing the components. Graph-based learning proceeds on the
hyper-graph, which is a fixed-size summary of the manifold
seen so far. This is the idea behind the use of Random Projec-
tion Trees in [17]; see also [18].

Looking forward, we need more efficient online semi-
supervised algorithms with theoretical guarantees. The com-
bination of online semi-supervised learning and online active
learning also deserves attention.

4. LEARNING NON-SMOOTH LABELS ON GRAPHS

The spectrum of the graph is the set of eigenvalue, eigenvector
pairs{(λi, ψi)}n+m

i=1 , where the LaplacianL =
∑

i λiψiψ
>
i .

If we sort λ from small to large, thenλ1 = . . . = λk =
0 if and only if the graph hask disconnected components.
The eigenvectorsΨ = {ψi} form an orthonormal basis. Any
target label function on the graph can be decomposed into
f =

∑
i αiψi, whereψ1 corresponds to the lowest frequency

component, andψn+m the highest frequency component. The
function’s energy can be shown to bef>Lf =

∑
i λiα

2
i .

Existing semi-supervised learning algorithms assume that
f is smooth with respect to the graph. This is equivalent to
assuming large (non-zero)α’s for smalli, and small (zero)α’s
for largei. In the future, one may wish to allow non-smooth
labelsf to model richer data, which must still be learnable
from a small number of labeled points. Compressive sensing
offers such guarantee iff is spectrally sparse, i.e., if onlyS �
n+m of theα’s are non-zero. TheseS non-zero components
can occupy any frequency, thus allowing non-smoothf and
generalizing the graph smoothness assumption.

Our key insight is thattransductive learning on graphs
corresponds to compressive sensing using the(n+m)×(n+
m) canonical basisΦ = I. Then × (n + m) sensing ma-
trix consists ofn random rows selected fromΦ. The sensing
matrix simply reads out the label values atn nodes; these
correspond to then labeled data items. Importantly, when the
graph is “nice,” i.e., without small (nearly) disconnected com-
ponents, the graph spectrum basisΨ is incoherent with the
canonical basisΦ. This allows the exact recovery of the whole
f from then observations whenn ≥ Cµ2(Φ,Ψ)S log(n +
m), whereµ(Φ,Ψ) =

√
n+mmaxi,j |φ>i ψj | is the coher-

ence (the lower the better).
We now give a concrete example. Consider a closed chain

graph (i.e., a ring) withn+m = 1024 nodes and edge weights
1. The graph spectrumΨ is the discrete Fourier basis, whose
coherence with the canonical basis is

√
2. Let S = 3, and

f = −ψ5 − 1.3ψ8 + ψ63, which is spectrally sparse yet non-
smooth as shown in Figure 3(left). We taken measurements
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Fig. 3. Compressive sensing on a closed-chain graph

from the canonical basis (i.e., select labeled items); thus we
have labelsy = f on thosen random nodes. We then solve
the standard̀1 minimization problem to recover̂α (thusf̂ on
the whole graph). We varyn from 1 to 60. For eachn we
run 100 trials; each takesn random rows fromΦ to form the
sensing matrix. For each trial, we compute the recovery error
‖f − f̂‖`2/‖f‖`2 . Each trial is a dot in Figure 3(right). It
seems exact recovery happens whenn > 35 for this graph.

Much work remains in improving this novel way of per-
forming transduction on a graph. Potential research direc-
tions include: identifying real-world problems with spectrally
sparse labels on graphs, finding bases that are more local-
ized than the Laplacian spectrum yet still incoherent with the
canonical sensing basis, and studying label acquisition mech-
anisms when the sensing basis is not canonical (e.g., random
matrices).

5. CONCLUSIONS

We have presented three new research directions for graph-
based semi-supervised learning and our initial approaches at
solving these novel problems. We hope this article will inspire
new research, making semi-supervised learning an even more
valuable tool for multimedia analysis.
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