

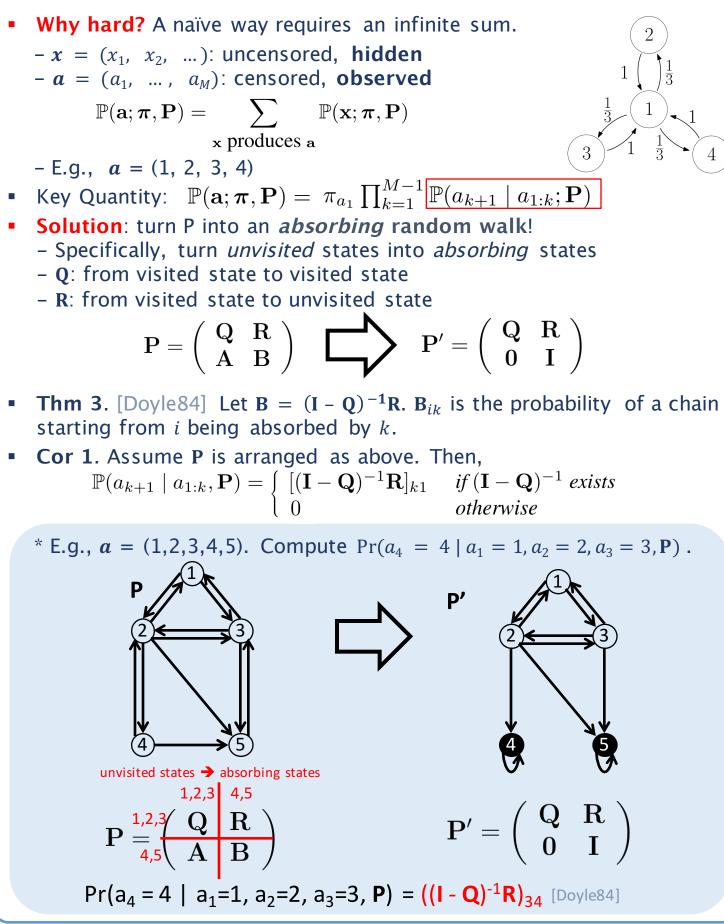
Human Memory Search as Initial-Visit Emitting Random Walk Kwang-Sung Jun^{*} (kjun@discovery.wisc.edu), Xiaojin Zhu[†], Timothy Rogers[‡], Zhuoran Yang^{ξ}, Ming Yuan^{ζ}

*Wisconsin Institute for Discovery, Department of [†]Computer Sciences, [‡]Psychology, ^ζStatistics, University of Wisconsin–Madison, ^ξDepartment of Mathematical Sciences, Tsinghua University

INitial-VIsiT Emitting (INVITE) Random Walk KEY: Output the state only when visiting it for the *first time* • *n* states, π : initial distribution, **P**: Markov chain (row stochastic) a output $X_1 = COW$ $x_{t+1} \sim P(. | x_t)$ $x_2 = horse$ a_1 COW $x_3 = chicken$ a_2 horse $X_A = COW$ *a*₃ chicken elephant $x_5 = bear$ a_4 bear $x_6 = lion$ tige a_5 lion $x_7 = bear$ a₆ tiger $x_8 = tiger$ ••• "Censored List" The random walk runs indefinitely. A censored list is not Markovian anymore. • **GOOD NEWS**: captures important human behavior in a cognitive task (see below) [Abbott12] BAD NEWS: Parameter Estimation is HARD! Main Contribution 1. First *tractable* method for the maximum likelihood estimate (MLE) of INVITE 2. *Consistency* of the INVITE MLE **Verbal Fluency: A Human Memory Search Task** TASK: List examples of *animals* in 60 seconds *without* repetition different categories possible: e.g., vehicles

- A "generative" task where participants must remember past productions, inhibit these, and focus on the task.
- Importance
- **1.** Clinical application: different neurological syndromes have different patterns in lists (e.g. repeats more, less/irrelevant items) \Rightarrow important diagnostic information
- **2. Study of human memory search**: responses are runs of semantically related items. \Rightarrow reveal structure in semantic representation
- Our focus is on the second application, so repeats are ignored, but can be allowed by a reduction (see future work).

Order	ltem
1	COW
2	horse
3	chicken
4	bear
5	lion
6	tiger
7	porcupine
8	rat
9	mouse
10	duck
11	goose
12	


- of it.

Transient state: a state that has nonzero probability of not coming back to itself in finite time **Recurrent state**: a state that is not transient A is **closed** if $i \in A$ and $j \notin A$ implies a walk from *i* cannot reach j.

B is **irreducible** if for all $i, j \in B$, a walk from *i* can reach *j*.

- recurrent states.
- closed irreducible set (W_k for some k)

$$\mathbf{P} = \begin{pmatrix} \mathbf{Q} \\ \mathbf{A} \end{pmatrix}$$

Censored Lists Generated by INVITE

• A censored list is a permutation of *n* items or a prefix

Does it produce every permutation? Or every prefix?

• Thm 1. [Durrett12] A finite set of states *S* can be uniquely decomposed as $S = T \cup W_1 \cup ... \cup W_K$, where T is the set of transient states (possibly empty) W_{k} is a nonempty closed irreducible set of

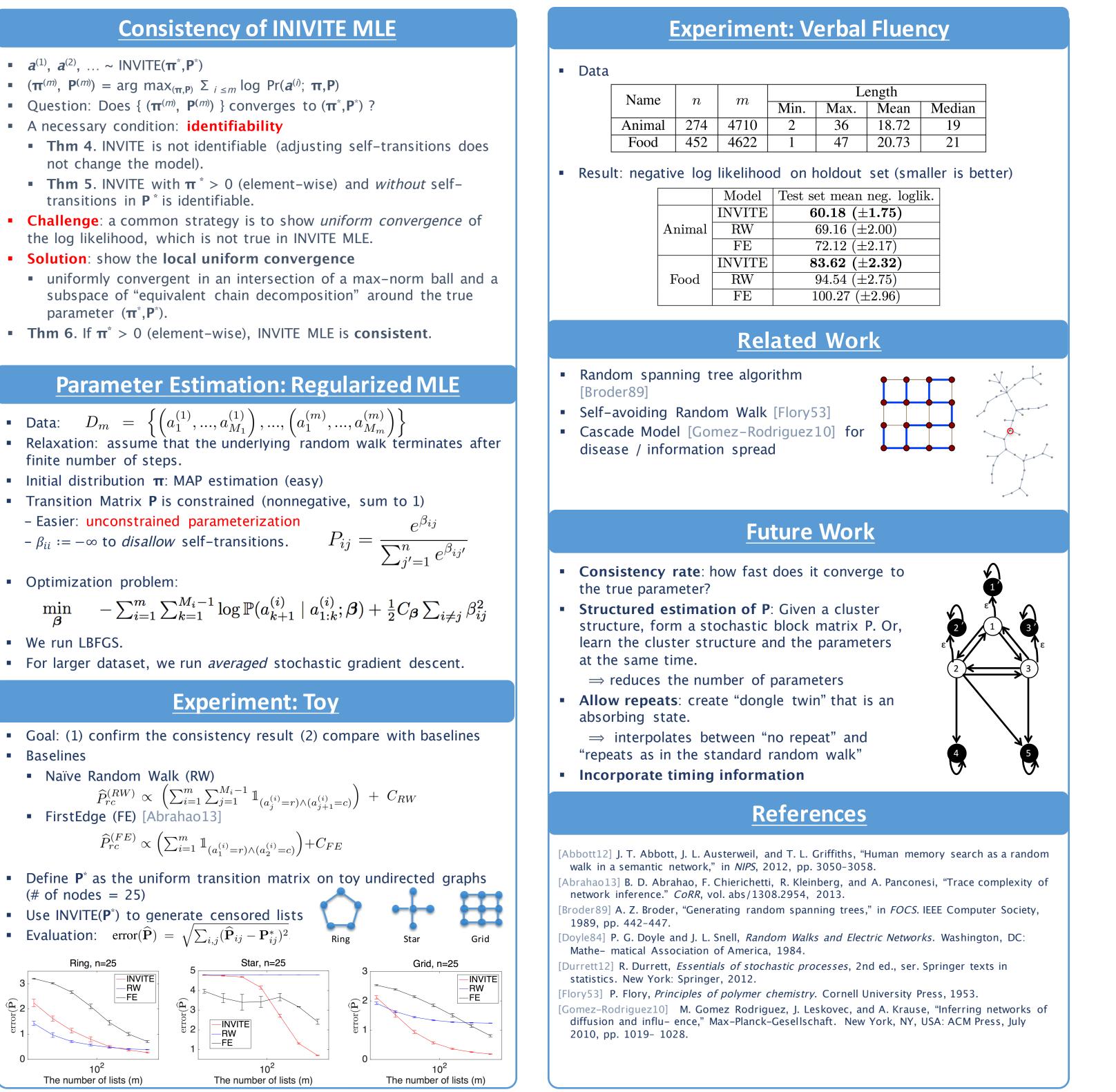
Thm 2. Given P, let $S = T \cup W_1 \cup ... \cup W_K$ be the decomposition by Thm 1. A censored list a generated by INVITE on P has zero or more transient states (in T), followed by all states in one and only one

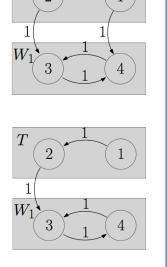
Computing INVITE Likelihood

- A necessary condition: **identifiability**
- not change the model).
- transitions in **P**^{*} is identifiable.
- the log likelihood, which is not true in INVITE MLE.
- parameter (π^* , **P**^{*}).

- finite number of steps.
- Transition Matrix P is constrained (nonnegative, sum to 1) - Easier: unconstrained parameterization

$$-\beta_{ii} := -\infty$$
 to *disallow* self-transitions. P


$$\min_{\beta} \quad -\sum_{i=1}^{m} \sum_{k=1}^{M_{i}-1} \log \mathbb{P}(a_{k+1}^{(i)} \mid a_{1:k}^{(i)}; \beta) + \frac{1}{2}C_{\beta} \sum_{k=1}^{M_{i}-1} \log \mathbb{P}($$


• FirstEdge (FE) [Abrahao13]

$$\widehat{P}_{rc}^{(FE)} \propto \left(\sum_{i=1}^{m} \mathbb{1}_{(a_1^{(i)}=r) \land (a_2^{(i)}=c)}\right) + C_{FE}$$

(# of nodes = 25)

Ring Star Ring, n=25 Star, n=25 -INVITE

