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Notation

X domain, e.g., a finite set of words

PX , e.g., uniform

f : X 7→ {−1, 1} classifier

f ∈ F hypothesis space
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In-class exam

bravery fever lice moonlight war
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Take home exam

cowardice daylight fun hero screech
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Did you overfit?

(x, y) iid∼ PXY

training error: ê(f) = 1
n

∑n
i=1(yi 6= f(xi))

true error: e(f) = E
(x,y)

iid∼PXY
[(y 6= f(x))]

want a bound
e(f) ≤ ê(f) + something
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Rademacher bound [Bartlett and Mendelson 2002]

On a training set of size n, w.p. at least 1− δ, ∀f ∈ F :

e(f) ≤ ê(f) +
R(F ,X , PX , n)

2
+

√
ln(1/δ)

2n
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Rademacher complexity [Bartlett and Mendelson 2002]

x = x1, . . . , xn
iid∼ PX

σ = σ1, . . . , σn
iid∼ Bernoulli(1

2 , 1
2) with values ±1

fit of f : |
∑n

i=1 σif(xi)|
fit of F : supf∈F |

∑n
i=1 σif(xi)|

Rademacher complexity

R(F ,X , PX , n) = Exσ

[
sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(xi)

∣∣∣∣∣
]
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Estimating human Rademacher complexity [NIPS 09]

“Learning the noise”

1 participant study {(xi, σi)}n
i=1

2 filler task

3 classify {xi}n
i=1: re-ordered; not told these were training items

At the end, we observe f̂(x1) . . . f̂(xn) from the human.
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Estimating human Rademacher complexity (cont.)

Key assumption:

f̂ = arg sup
f∈F

n∑
i=1

σif(xi)

therefore,

sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(xi)

∣∣∣∣∣ ≈
∣∣∣∣∣ 2n

n∑
i=1

σif̂(xi)

∣∣∣∣∣
Averaging over participants gives an estimate of R.

(Oct. 2011) Machine Learning Theory of the People 10 / 27



Estimating human Rademacher complexity (cont.)

Key assumption:

f̂ = arg sup
f∈F

n∑
i=1

σif(xi)

therefore,

sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(xi)

∣∣∣∣∣ ≈
∣∣∣∣∣ 2n

n∑
i=1

σif̂(xi)

∣∣∣∣∣

Averaging over participants gives an estimate of R.

(Oct. 2011) Machine Learning Theory of the People 10 / 27



Estimating human Rademacher complexity (cont.)

Key assumption:

f̂ = arg sup
f∈F

n∑
i=1

σif(xi)

therefore,

sup
f∈F

∣∣∣∣∣ 2n
n∑

i=1

σif(xi)

∣∣∣∣∣ ≈
∣∣∣∣∣ 2n

n∑
i=1

σif̂(xi)

∣∣∣∣∣
Averaging over participants gives an estimate of R.

(Oct. 2011) Machine Learning Theory of the People 10 / 27



Human Rademacher complexity

rape killer funeral · · · fun laughter joy

the Shape X the Word X
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Does the bound work?

“Learning any task”

1 participant study {(xi, yi)}n
i=1

2 filler task

3 classify {xi}n+100
i=1 : re-ordered; not told some were training items
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Yes the bound works

e(f) ≤ ê(f) +
R(F ,X , PX , n)

2
+

√
ln(1/δ)

2n

condition subject ê bound e

WordEmotion 101 0.00 1.43 0.58
n=5 102 0.00 1.43 0.46

103 0.00 1.43 0.04
104 0.00 1.43 0.03
105 0.00 1.43 0.31

WordEmotion 106 0.70 1.23 0.65
n=40 107 0.00 0.53 0.04

108 0.00 0.53 0.00
109 0.62 1.15 0.53
110 0.00 0.53 0.05
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Oh how they overfit!

mnemonics
I (grenade, B), (skull, A), (conflict, A), (meadow, B), (queen, B)
I “a queen was sitting in a meadow and then a grenade was thrown (B

= before), then this started a conflict ending in bodies & skulls (A =
after)”

idiosyncratic rules
I whether the shape “faces downward”
I whether the word “tastes good”
I “anything related to omitting (sic) light”
I “things you can go inside”
I odd or even number of syllables
I “relates to motel service”
I “physical vs. abstract”
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Smaller Rademacher complexity, less actual overfitting
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now you be the teacher
B B B B B
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The teaching dimension [Goldman and Kearns 1995]

items X
H threshold functions

teaching set of h ∈ H: subset of X consistent with h only

TD(h): size of the smallest teaching set of h, 1 or 2

TD(H): TD(h∗) for the hardest h∗ ∈ H, 2

Optimal teaching should start around the decision boundary.
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Curriculum learning [Bengio et al. 2009]

Teaching should start from easy to hard, i.e., outside to inside.
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You teach robot ... [to appear at NIPS 11]
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... graspability
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Observed human teaching strategy 1
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Observed human teaching strategy 2
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Extending teaching dimension for curriculum learning

Humans represent objects by many dimensions!

squirrel = ( graspable, shy, store supplies for the winter, is not
poisonous, has four paws, has teeth, has two ears, has two eyes, is
beautiful, is brown, lives in trees, rodent, doesn’t herd, doesn’t sting,
drinks water, eats nuts, feels soft, fluffy, gnaws on everything, has a
beautiful tail, has a large tail, has a mouth, has a small head, has
gnawing teeth, has pointy ears, has short paws, is afraid of people, is
cute, is difficult to catch, is found in Belgium, is light, is not a pet, is
not very big, is short haired, is sweet , jumps, lives in Europe, lives in
the wild, short front legs, small ears, smaller than a horse, soft fur,
timid animal, can’t fly, climbs in trees, collects nuts, crawls up trees,
eats acorns, eats plants, does not lay eggs ... )
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Idealized assumptions

available teaching items x1, . . . ,xn ∼ unif[0, 1]d

first dim determines label p(yi = 1 | xi) = 1{xi1> 1
2
}

learner’s version space V : axis-parallel decision boundaries
I after two teaching items (x1, 1), (x2, 0)

dim 1 dim 2

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

ab 1/2 1θ10

1
a ≡ x11, b ≡ x21

x12

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

1/2 10

1

x22

θ2

learner is a Gibbs classifier
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Risk minimization leads to teaching extremes

learner’s risk

R =
1
|V |

(∫ a

b
|θ1 −

1
2
|dθ1 +

d∑
k=2

∫ max(x1k,x2k)

min(x1k,x2k)

1
2
dθk

)

teacher chooses a, b to minimize R (trade off)

Theorem

The risk R is minimized by a∗ =
√

c2+2c−c+1
2 and b = 1− a∗, where

c ≡
∑d

k=2 |x1k − x2k|.

c is the sum of d− 1 Beta(1, 2) random variables.

Corollary

When d →∞, the minimizer of R is a∗ = 1, b∗ = 0.

In practice, d = 10, a∗ = 0.94; d = 100, a∗ = 0.99
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Theorem

The risk R is minimized by a∗ =
√

c2+2c−c+1
2 and b = 1− a∗, where

c ≡
∑d

k=2 |x1k − x2k|.

c is the sum of d− 1 Beta(1, 2) random variables.

Corollary

When d →∞, the minimizer of R is a∗ = 1, b∗ = 0.

In practice, d = 10, a∗ = 0.94; d = 100, a∗ = 0.99
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Teaching items should approach decision boundary

Theorem

Let the teaching sequence contain t0 negative labels and t− t0 positive
ones. Then the version space in dim k has size |Vk| = αkβk, where

αk ∼ Bernoulli
(
2/
(

t
t0

)
, 1− 2/

(
t
t0

))
βk ∼ Beta(1, t)

independently for k = 2 . . . d. Consequently, E(c) = 2(d−1)(
t
t0

)
(1+t)

.
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Conclusion

Machine learning and cognitive science have much to offer to each other.
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