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It is virtually impossible to get anything exactly right - Carl de Boor

The authors would like to report three corrections to the original manuscript. These
changes do not effect the main results of this paper, but are needed to make the argu-
ments technically sound.

1) Definition of margin γ - We replace the ‖ · ‖∞ norm in the definition of the
margin, with infx∈X | · |. The correction definition is given as below.

The collection PXY is indexed by a margin parameter γ, which denotes the
minimum width of a decision set or separation between the component sup-
port sets Ck. The margin γ is assigned a positive sign if there is no overlap
between components, otherwise it is assigned a negative sign. Formally, for
j, k ∈ {1, . . . ,K}, let

djk := min
p,q∈{1,2}

inf
x∈X

|g(p)
j (x)− g(q)

k (x)| j 6= k,

and
dkk := inf

x∈X
|g(1)
k (x)− g(2)

k (x)|.

Then the margin is defined as

γ = σ · min
j,k∈{1,...,K}

djk, where σ =
{

1 if Cj ∩ Ck = ∅ ∀j 6= k
−1 otherwise .

2) Properties of kernel G used for density estimation - The kernel G cannot
be positive, integrate to one, as well as have vanishing moments of order ≥ 2.
Therefore, we remove the restriction that the kernel G be positive. This does
not change any of the arguments in the paper. However, since a negative kernel
density estimate is not a bonafide density, one can use other techniques proposed
in the literature such as estimating the log of the density [1, 2].

3) Decision set estimation - We modify the definition of connectedness used to
estimate the decision sets. Recall that hm = κ0((logm)2/m)1/d where κ0 > 0
is a constant. Let gn = (log n)−2. Two points that are 2

√
dgn close in X =

[0, 1]d are connected if there exists a sequence of 2
√
dhm-dense unlabeled data

points connecting the two points such that the marginal density varies smoothly
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along the sequence, and the sequence lies within a distance of gn log n of one of
the points. Connectedness is then extended to points that are not 2

√
dgn close

by association. A formal statement is given below.

Two points x1, x2 ∈ X such that ‖x1 − x2‖ ≤ 2
√
dgn are said to be connected,

denoted by x1 ↔ x2, if there exists a sequence of points x1 = z1, z2, . . . , zl−1,
zl = x2 where z2, . . . , zl−1 ∈ U , such that

(1) ‖zj − zj+1‖ ≤ 2
√
dhm, for all j,

(2) |p̂(zi)− p̂(zj)| ≤ δn := (log log n)−1 for all i, j, and

(3) ‖x1 − zi‖ = O(gn log n) for all i.

In addition, if x1 ↔ x2 and x2 ↔ x3, then x1 ↔ x3. All points that are pairwise
connected specify an empirical decision set.

Lemma 1 is now modified as follows:

Lemma 1. Let ∂D denote the boundary of a decision set D and define the set of
boundary points as

B = {x : inf
z∈∪D∈D∂D

‖x− z‖ ≤ 2
√
dhm}.

If |γ| > 6
√
dhm, then for all p ∈ PX , all pairs of labeled data points X1, X2 ∈

supp(p)\B and allD ∈ D, with probability> 1−1/m−(log n)2de−pminn/(logn)2d

,

X1, X2 ∈ D if and only if X1 ↔ X2

for large enough m ≥ m0 and n ≥ n0, where m0, n0 depend only on the fixed
parameters of the class PXY (γ).

Proof. We will use the density estimation results (Theorem 1 and Corollary 2 in
the paper) and establish the result in two steps:

1. X1 ∈ D,X2 6∈ D ⇒ X1 6↔ X2 : Since X1 and X2 belong to different de-
cision sets, all sequences connecting X1 and X2 through unlabeled data points
pass through a region where either (i) the density is zero and since the region
is at least |γ| > 6

√
dhm wide, there cannot exist a sequence as defined in Sec-

tion 3 such that ‖zj − zj+1‖ ≤ 2
√
dhm, or (ii) the density is positive. In the

latter case, the marginal density p(x) jumps by at least pmin one or more times
along all sequences connecting X1 and X2. Consider the sequences connecting
X1 and X2 through unlabeled data points such that ‖X1 − zi‖ = O(gn log n)
for all i in the sequence, and suppose the first jump occurs where decision set
D ends and another decision set D′ 6= D begins (in the sequence). Then
since D′ is at least |γ| > 6

√
dhm wide, by Corollary 2, there exist a point

zi (possibly X2) in the sequence that lies in D′ \ B. Since the density on
each decision set is Hölder-α smooth and ‖X1 − zi‖ = O(gn log n), we have
|p(X1)− p(zi)| ≥ pmin −O((gn log n)min(1,α)). Since X1, zi 6∈ B, using The-
orem 1, |p̂(X1)− p̂(zi)| ≥ |p(X1)− p(zi)| − 2εm > δn for large enough m and
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n. Thus, X1 6↔ X2.

2. X1, X2 ∈ D ⇒ X1 ↔ X2 : Using Proposition 1 given below (which is a
stronger version of Corollary 2), it holds that with probability> 1−g−dn e−pming

d
nn,

the labeled data points are 2
√
dgn dense. Since connectedness extends by asso-

ciation, it suffices to consider pointsX1 andX2 such that ‖X1−X2‖ ≤ 2
√
dgn.

Next we show that if ‖X1 − X2‖ ≤ 2
√
dgn, then the shortest path within D

that connects X1 and X2 is of length O(gn). If the two points are far from the
boundary of D, then they may be connected by a straight line. If one and/or
the other is close to the boundary, then the shortest path may need to follow the
contour of the boundary to avoid passing outside of D (if the decision set is non-
convex). Suppose that both X1 and X2 are on the boundary. Then the shortest
path between them is along the boundary, and because the boundary is Lipschitz
the length of the path is O(gn). Thus, it follows that, in general, the shortest
path between X1 and X2 is O(gn). We argue that there exists a sequence of
2
√
dhm-dense unlabeled data points connectingX1 andX2 that lies close to this

shortest path and is contained in D \ B. Notice that since D has width at least
|γ| > 6

√
dhm, there exists a region of width > 2

√
dhm contained in D \ B and

Corollary 2 implies that with probability > 1 − 1/m, there exists a sequence
contained inD\B connectingX1 andX2 through 2

√
dhm-dense unlabeled data

points that lies within 2
√
dhm of the shortest path. Therefore, this sequence of

2
√
dhm-dense unlabeled data points also lies withinO(gn) ofX1. Further, since

the sequence is contained inD and the density onD is Hölder-α smooth, we have
for all points zi, zj in the sequence, |p(zi) − p(zj)| ≤ O(gmin(1,α)

n ). Moreover,
as zi, zj 6∈ B, using Theorem 1, |p̂(zi) − p̂(zj)| ≤ |p(zi) − p(zj)| + 2εm ≤ δn
for large enough m and n (depending only on the parameters of the class). Thus,
X1 ↔ X2.

Proposition 1. (Empirical density of labeled data). For all p ∈ PX , with prob-
ability > 1 − g−dn e−pming

d
nn, for all x ∈ supp(p), ∃Xi ∈ L, the set of labeled

data points, s.t. ‖Xi − x‖ ≤
√
dgn.

Proof. Consider a point x ∈ supp(p). Let x̄ denotes the point closest to x on
a uniform grid over the domain X = [0, 1]d with spacing gn. Let Bx̄ denote a
square cell of sidelength gn centered at x̄. If we can show that Bx̄ contains at
least one labeled data point for all x̄ with high probability, then it follows that
∃Xi ∈ L s.t. ‖Xi − x‖ ≤

√
dgn for all x ∈ supp(p). We now bound the

probability that no labeled point lies in the ball Bx̄ for some x̄ as follows:

P (∪x̄{Bx̄ contains no labeled data}) ≤
∑
x̄

P (Bx̄ contains no labeled data)

≤
∑
x̄

Πn
i=1P (Xi 6∈ Bx̄)

≤
∑
x̄

(1− pming
d
n)n

≤ g−dn e−pming
d
nn
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Third step follows since p(x) ≥ pmin for all x ∈ supp(p) and volume of Bx̄
is gdn. The last step follows since 1 − z ≤ e−z and the number of x̄ points are
g−dn .

This introduces an additional term of O((log n)2de−pminn/(logn)2d

) in Corollary
1 bound on the performance of the semi-supervised learner, due to the probability
with which Lemma 1 now holds. However, the additional term is O(ε2(n)) (at
least up to log factors) in both the regression and classification settings, and thus
the conclusions remain the same.
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