Online Semi-Supervised Learning

Andrew B. Goldberg, Ming Li, Xiaojin Zhu*

jerryzhu@cs.wisc.edu Computer Sciences University of Wisconsin-Madison

Life-long learning

$$x_1$$
 x_2 ... x_{1000} ... $x_{1000000}$... $y_1 = 0$ - $y_{1000} = 1$... $y_{1000000} = 0$...

This is how children learn, too

$$x_1$$
 x_2 ... x_{1000} ... $x_{1000000}$... $y_1 = 0$ - $y_{1000} = 1$... $y_{1000000} = 0$...

Unlike standard supervised learning:

- ullet $n o \infty$ examples arrive sequentially, cannot even store them all
- most examples unlabeled
- no iid assumption, p(x,y) can change over time

New paradigm: online semi-supervised learning

Main contribution: merging

- online learning: learn non-iid sequentially, but fully labeled
- 2 semi-supervised learning: learn from labeled and unlabeled data, but in batch mode
- **1** At time t, adversary picks $x_t \in \mathcal{X}, y_t \in \mathcal{Y}$ not necessarily iid, shows x_t
- **2** Learner has classifier $f_t: \mathcal{X} \mapsto \mathbb{R}$, predicts $f_t(x_t)$
- ullet With small probability, adversary reveals y_t ; otherwise it abstains (unlabeled)
- Learner updates to f_{t+1} based on x_t and y_t (if given). Repeat.

Review: batch manifold regularization

A form of graph-based semi-supervised learning [Belkin et al. JMLR06]:

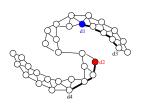
- Graph on $x_1 \dots x_n$
- Edge weights w_{st} encode similarity between x_s, x_t , e.g., $k\mathsf{NN}$
- Assumption: similar examples have similar labels

Manifold regularization minimizes risk:

$$J(f) = \frac{1}{l} \sum_{t=1}^{T} \delta(y_t) c(f(x_t), y_t) + \frac{\lambda_1}{2} ||f||_K^2 + \frac{\lambda_2}{2T} \sum_{s,t=1}^{T} (f(x_s) - f(x_t))^2 w_{st}$$

c(f(x),y) convex loss function, e.g., the hinge loss. Solution $f^* = \arg \min_f J(f).$

Generalizes graph mincut and label propagation.



From batch to online

batch risk = average instantaneous risks

$$J(f) = \frac{1}{T} \sum_{t=1}^{T} J_t(f)$$

Batch risk

$$J(f) = \frac{1}{l} \sum_{t=1}^{T} \delta(y_t) c(f(x_t), y_t) + \frac{\lambda_1}{2} ||f||_K^2 + \frac{\lambda_2}{2T} \sum_{s,t=1}^{T} (f(x_s) - f(x_t))^2 w_{st}$$

Instantaneous risk

$$J_t(f) = \frac{T}{l}\delta(y_t)c(f(x_t), y_t) + \frac{\lambda_1}{2}||f||_K^2 + \lambda_2 \sum_{i=1}^t (f(x_i) - f(x_t))^2 w_{it}$$

(includes graph edges between x_t and all previous examples)

Online convex programming

Instead of minimizing convex J(f), reduce convex $J_t(f)$ at each step t.

$$f_{t+1} = f_t - \eta_t \left. \frac{\partial J_t(f)}{\partial f} \right|_{f_t}$$

Remarkable no regret guarantee against adversary:

- Accuracy can be arbitrarily bad if adversary flips target often
- If so, no batch learner in hindsight can do well either

$$ext{regret} \equiv rac{1}{T} \sum_{t=1}^T J_t(f_t) - J(f^*)$$

[Zinkevich ICML03] No regret: $\limsup_{T\to\infty} \frac{1}{T} \sum_{t=1}^T J_t(f_t) - J(f^*) \leq 0$.

If no adversary (iid), the average classifier $\bar{f} = 1/T \sum_{t=1}^{T} f_t$ is good: $J(\bar{f}) \to J(f^*)$.

Kernelized algorithm

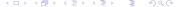
$$f_t(\cdot) = \sum_{i=1}^{t-1} \alpha_i^{(t)} K(x_i, \cdot)$$

- Init: $t = 1, f_1 = 0$
- Repeat
 - receive x_t , predict $f_t(x_t) = \sum_{i=1}^{t-1} \alpha_i^{(t)} K(x_i, x_t)$
 - 2 occasionally receive y_t
 - **3** update f_t to f_{t+1} by

$$\alpha_i^{(t+1)} = (1 - \eta_t \lambda_1) \alpha_i^{(t)} - 2\eta_t \lambda_2 (f_t(x_i) - f_t(x_t)) w_{it}, \quad i < t$$

$$\alpha_t^{(t+1)} = 2\eta_t \lambda_2 \sum_{i=1}^t (f_t(x_i) - f_t(x_t)) w_{it} - \eta_t \frac{T}{l} \delta(y_t) c'(f(x_t), y_t)$$

• store x_t , let t = t + 1



Sparse approximation

The algorithm is impractical

- space O(T): stores all previous examples
- ullet time $O(T^2)$: each new example compared to all previous ones
- $T \to \infty$

Two ways to speed up:

- buffering, or
- random projection tree

Sparse approximation 1: buffering

Keep a size au buffer

- approximate representers: $f_t = \sum_{i=t-\tau}^{t-1} \alpha_i^{(t)} K(x_i,\cdot)$
- approximate instantaneous risk

$$J_t(f) = \frac{T}{l}\delta(y_t)c(f(x_t), y_t) + \frac{\lambda_1}{2} ||f||_K^2 + \lambda_2 \frac{t}{\tau} \sum_{i=t-\tau}^t (f(x_i) - f(x_t))^2 w_{it}$$

dynamic graph on examples in the buffer

Sparse approximation 1: buffer update

• At each step, start with the current τ representers:

$$f_t = \sum_{i=t-\tau}^{t-1} \alpha_i^{(t)} K(x_i, \cdot) + 0K(x_t, \cdot)$$

• Gradient descent on $\tau + 1$ terms:

$$f' = \sum_{i=t-\tau}^{t} \alpha_i' K(x_i, \cdot)$$

• Reduce to τ representers $f_{t+1} = \sum_{i=t-\tau+1}^t \alpha_i^{(t+1)} K(x_i,\cdot)$ by

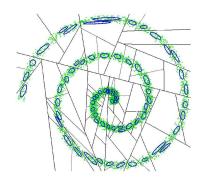
$$\min_{\alpha^{(t+1)}} \|f' - f_{t+1}\|^2$$

Kernel matching pursuit

Sparse approximation 2: random projection tree

[Dasgupta and Freund, STOC08]

- Discretize data manifold by online clustering.
- When a cluster accumulates enough examples, split along random hyperplane.
- Extends k-d tree.



Sparse approximation 2: random projection tree

We use the clusters $\mathcal{N}(\mu_i, \Sigma_i)$ as representers:

$$f_t = \sum_{i=1}^{s} \beta_i^{(t)} K(\mu_i, \cdot)$$

"Cluster graph" edge weight between a cluster μ_i and example x_t is

$$w_{\mu_{i}t} = \mathbb{E}_{x \sim \mathcal{N}(\mu_{i}, \Sigma_{i})} \left[\exp\left(-\frac{||x - x_{t}||^{2}}{2\sigma^{2}}\right) \right]$$

$$= (2\pi)^{-\frac{d}{2}} |\Sigma_{i}|^{-\frac{1}{2}} |\Sigma_{0}|^{-\frac{1}{2}} |\tilde{\Sigma}|^{\frac{1}{2}}$$

$$\exp\left(-\frac{1}{2} \left(\mu_{i}^{\top} \Sigma_{i}^{-1} \mu_{i} + x_{t}^{\top} \Sigma_{0}^{-1} x_{t} - \tilde{\mu}^{\top} \tilde{\Sigma} \tilde{\mu}\right) \right)$$

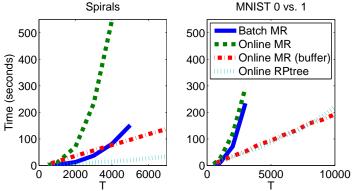
A further approximation is

$$w_{\mu_i t} = e^{-\|\mu_i - x_t\|^2 / 2\sigma^2}$$

Update f (i.e., β) and the RPtree, discard x_t .

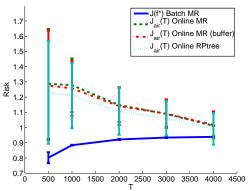
Experiment: runtime

Buffering and RPtree scales linearly, enabling life-long learning.



Experiment: risk

Online MR risk $J_{air}(T) \equiv \frac{1}{T} \sum_{t=1}^{T} J_t(f_t)$ approaches batch risk $J(f^*)$ as T increases.



Experiment: generalization error of \hat{f} if iid

Online MR

Online MR (buffer) Online MR (buffer-U)

Online PPtree (PPk

Online RPtree

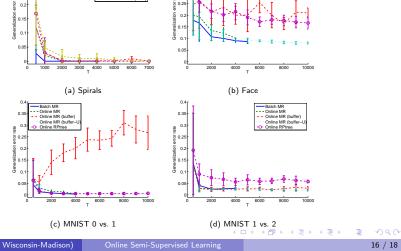
A variation of buffering as good as batch MR (preferentially keep labeled examples, but not their labels, in buffer).

0.35

0.3

Online MR (buffer-U)

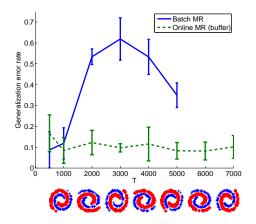
Online RPtree



0.3

Experiment: adversarial concept drift

- Slowly rotating spirals, both p(x) and p(y|x) changing.
- ullet Batch f^* vs. online MR buffering f_T
- Test set drawn from the current p(x,y) at time T.



Conclusions

- Online semi-supervised learning framework
- Sparse approximations: buffering and RPtree
- Future work: new bounds, new algorithms (e.g., S3VM)