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Life-long learning
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This is how children learn, too
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Unlike standard supervised learning:
@ n — oo examples arrive sequentially, cannot even store them all
@ most examples unlabeled

@ no iid assumption, p(z,y) can change over time
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New paradigm: online semi-supervised learning

Main contribution: merging
© online learning: learn non-iid sequentially, but fully labeled

@ semi-supervised learning: learn from labeled and unlabeled data, but
in batch mode

Q At time t, adversary picks x; € X, y; € Y not necessarily iid, shows x;
@ Learner has classifier f; : X — R, predicts fi(z¢)

© With small probability, adversary reveals 1;; otherwise it abstains
(unlabeled)

@ Learner updates to f;+1 based on x; and v, (if given). Repeat.
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Review: batch manifold regularization

A form of graph-based semi-supervised learning [Belkin et al. JMLRO06]:
o Graphon x1...x,
o Edge weights wg; encode similarity between x4, x4, e.g., kNN
@ Assumption: similar examples have similar labels

Manifold regularization minimizes risk:

1 L A1 2 A2 o 2
J() =3 D 8we(f(m)m) + SNl + 55 D (Fs) = fla0) *ws
t=1 s,t=1

c(f(z),y) convex loss function, e.g., the hinge loss.
Solution f* = argming J(f).
Generalizes graph mincut and label propagation.
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From batch to online

batch risk = average instantaneous risks

J(f) = %Y1 Ji(f)

Batch risk
s A A w— )
IU) = oSl aan) + 5 W+ 32 (7o) = Fon) P
t=1 s,t=1
Instantaneous risk
T )\1 2 : 2
Ji(F) = F0)e(f () y) + 5 Il + A2 3 (F () = F )i
i=1

(includes graph edges between z; and all previous examples)
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Online convex programming

Instead of minimizing convex J(f), reduce convex Ji(f) at each step ¢.

Jrer=ft—m 8{;;]”)

ft
Remarkable no regret guarantee against adversary:
@ Accuracy can be arbitrarily bad if adversary flips target often

@ If so, no batch learner in hindsight can do well either
1 X
regret = T ; Je(fe) = J(f)

[Zinkevich ICMLO3] No regret: lim supy_, % Zthl Ji(fe) = J(f*) <0.

If no adversary (iid), the average classifier f=1T Zle ft is good:
J(f) = J(f").
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Kernelized algorithm

t—1
)= ol K ()
=1

e hnit: t=1,f,=0

@ Repeat
© receive xy, predict fi(xy) = ZZ 1 a(t)K(xz,xt)
@ occasionally receive y;
© update f; to fiy1 by

o™ = (1=l = 2o (fulw:) — fulw))wa, i<t
t

o = 2 Y (fules) — )i — ) (), )
=1

Q store g, lett=t+1
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Sparse approximation

The algorithm is impractical
@ space O(T): stores all previous examples
e time O(T?): each new example compared to all previous ones
o T — o0

Two ways to speed up:

o buffering, or

@ random projection tree
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Sparse approximation 1: buffering

Keep a size 7 buffer
o approximate representers: f; = >.\_} ozl(t)K(xi, )

@ approximate instantaneous risk

t

) = TOe(r ),y + S I+ Xt D2 () — ) i

i=t—T1

@ dynamic graph on examples in the buffer
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Sparse approximation 1: buffer update

@ At each step, start with the current 7 representers:

t—1

fo="3" ol K (i) + 0K (z,)

i=t—T1

@ Gradient descent on 7 + 1 terms:

o Reduce to 7 representers fii1 =3\, ., agtH)K(xi, -) by

: r_ 2
ni, If" = feaall

@ Kernel matching pursuit
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Sparse approximation 2: random projection tree

[Dasgupta and Freund, STOCO8]
@ Discretize data manifold by online clustering.

@ When a cluster accumulates enough examples, split along random
hyperplane.

@ Extends k-d tree.
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Sparse approximation 2: random projection tree
We use the clusters N (1;,%;) as representers:

Zﬁ Nz:

“Cluster graph” edge weight between a cluster y; and example x; is

_ ||z — | ?
Wit = Boonuzy |XP(—T5 5

_dio 1L 11
= (2m) 2% 72302 (]2
1 _ _ T~
exp <—5 (uﬁi Vi o S5 ey — uTEu>>
A further approximation is
o lmi—=t]? /202

Wyt =

Update f (i.e., ) and the RPtree, discard z;.
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Experiment: runtime

Buffering and RPtree scales linearly, enabling life-long learning.
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Experiment: risk

Online MR risk Ju;,-(T) = %Zthl Ji(ft) approaches batch risk J(f*) as
T increases.
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Experiment: generalization error of f if iid

A variation of buffering as good as batch MR (preferentially keep labeled
examples, but not their labels, in buffer).
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Experiment: adversarial concept drift

e Slowly rotating spirals, both p(z) and p(y|x) changing.
@ Batch f* vs. online MR buffering fr

@ Test set drawn from the current p(z,y) at time T.
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Conclusions

@ Online semi-supervised learning framework
@ Sparse approximations: buffering and RPtree

e Future work: new bounds, new algorithms (e.g., S3VM)
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