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Abstract

Following a discussion on the general form of
regularization for semi-supervised learning,
we propose a semi-supervised regression algo-
rithm. It is based on the assumption that we
have certain order preferences on unlabeled
data (e.g., point x1 has a larger target value
than x2). Semi-supervised learning consists
of enforcing the order preferences as regu-
larization in a risk minimization framework.
The optimization problem can be effectively
solved by a linear program. Experiments
show that the proposed semi-supervised re-
gression outperforms standard regression.

1 Semi-supervised learning as

regularization on unlabeled data

Semi-supervised learning works when its assumption
on unlabeled data, often expressed as regularization,
fits the reality of the problem domain. In this paper we
first generalize the regularization formulation of some
common semi-supervised learning approaches, namely
manifold regularization, semi-supervised support vec-
tor machines, and multi-view learning [1, 2, 3]. Reg-
ularization for each individual approach is not new.
However these approaches have been studied largely
in isolation. Our general form serves as a bridge to
connect them, and to inspire novel semi-supervised
approaches. As an example of the latter, we pro-
pose a novel algorithm for semi-supervised regression.
The proposed regression algorithm is able to incor-
porate domain knowledge about the relative order of
target values on unlabeled points. It thus differs from,
and complements, existing semi-supervised regression
methods, which do not use such domain knowledge but
require multiple views [4, 5].

Let us review the three common semi-supervised learn-
ing methods. Manifold regularization [6, 7] generalizes

several graph-based semi-supervised learning methods.
Let l be the number of labeled points, u the number of
unlabeled points. Graph-based semi-supervised learn-
ing requires a weighted, undirected graph, character-
ized by an (l + u) × (l + u) weight matrix W defined
on labeled and unlabeled data. It is assumed that
from the features of two points xi, xj (e.g., by com-
puting their Euclidean distance), domain experts can
assign a non-negative weight wij . A large wij implies
a preference for f(xi), f(xj) to be similar. Therefore
subgraphs with large weights tend to have the same la-
bel. This is sometimes called the cluster assumption.
Let K be a kernel and H the corresponding Reproduc-
ing Kernel Hilbert Space (RKHS). Let y be the labels,
which can be categories for classification or real num-
bers for regression. Manifold regularization seeks a
prediction function f ∈ H, such that f is the solution
to

min
f∈H

l
∑

i=1

c(yi, f(xi)) + λ1‖f‖
2
H + λ2flu

⊤Lflu. (1)

The first two terms are standard in kernel machines.
The function c() is any loss function, e.g., the hinge
loss c(y, f) = max(1 − yf, 0) used in support vector
machines; ‖f‖H is the RKHS norm of f , which serves as
regularization. The two λ’s are tunable weights. The
third term flu

⊤Lflu regularizes f so that it is smooth
over the graph, where flu = (f(x1) . . . f(xl+u))⊤ is the
vector of f values on labeled and unlabeled data. The
(l+u)×(l+u) matrix L can be the combinatorial graph
Laplacian diag(W1)−W where 1 is the all-one vector.
Other variants are possible. If L is the combinatorial
graph Laplacian, the third term can be shown to be
flu

⊤Lflu =
∑

ij wij(f(xi)−f(xj))
2. This term penal-

izes the difference between f(xi), f(xj) more when wij

is large, thus enforcing the smoothness assumption.

Semi-supervised support vector machines (also known
as transductive SVMs) [8, 9] are based on a different
assumption, that the decision boundary should avoid



dense regions. The problem can be defined as [10]

min
f∈H

l
∑

i=1

c(yi, f(xi))+λ1‖f‖
2
H+λ2

l+u
∑

i=l+1

max(1−|f(xi)|, 0).

(2)
As before, the function c() is the hinge loss on labeled
points. Since sign(f(xi))f(xi) = |f(xi)|, the third
term is the hinge loss on unlabeled points, if we as-
sign the putative label sign(f(xi)) to unlabeled point
xi according to the predictor f . Such loss is zero if
f(xi) /∈ (−1, 1). To avoid loss from the third term,
the predictor f should attempt to produce |f(xi)| ≥ 1
on unlabeled points. It is equivalent to finding a deci-
sion boundary f = 0 so that the unlabeled points are
outside the margin. This in turn means the decision
boundary will avoid dense unlabeled regions. Because
the third term is not convex, much research has fo-
cused on effectively solving (2).

Multi-view learning [11] employes multiple learners.
The regularization term encodes the domain knowl-
edge that the M learners should agree with each other
on unlabeled data [5, 12]:

min
f∈H

∑M

v=1

(

∑l

i=1
c(yi, fv(xi)) + λ1‖fv‖

2
Hv

)

+λ2

∑M

u,v=1

∑l+u

i=l+1
(fu(xi) − fv(xi))

2. (3)

Comparing the three approaches (1)(2)(3), we note
the common role of unlabeled data: It acts as data-
dependent regularization in addition to the standard
RKHS norm ‖f‖H. Such regularization encodes the
assumptions of each method. We argue that novel
assumptions, stemming from domain knowledge and
taking the form of regularization, give rise to novel
semi-supervised learning algorithms. We unify a large
family of semi-supervised learning algorithms by the
optimization problem

min
f∈H

l
∑

i=1

c(yi, f(xi))+λ1Ω(‖f‖H)+λ2r(f(x1) . . . f(xl+u)).

(4)
The function c() is a loss function that we choose for
classification or regression; Ω() is a strictly monotonic
increasing function; r() is a regularization term that
depends on f() values on labeled and unlabeled data.
It may also depend on x, and the labeled data’s la-
bels. The function r() encodes the assumptions of
semi-supervised learning, and should be chosen care-
fully to fit the problem domain. The solution of (4)
can be characterized by a representer theorem for semi-
supervised learning:

Theorem 1 (Representer Theorem for Semi-
Supervised Learning) Let K be a kernel and H the

RKHS. The minimizer f∗ ∈ H of (4) admits the form

f∗(x) =
∑l+u

i=1
αiK(xi, x) .

The theorem states that the minimizer is expressed by
a finite set of representers K(xi, ·) over both labeled and
unlabeled data. It is a special case of the original rep-
resenter theorem [13, 14], and a simple generalization
of Theorem 2.2 in [7] to arbitrary functions r(). The
proof uses the standard orthogonality argument, and
is omitted for space consideration. The significance of
(4) lies in its interpretation for semi-supervised learn-
ing:

1. The representer theorem holds for arbitrary r().
This in theory allows one to encode complex do-
main knowledge about the unlabeled data for semi-
supervised learning. In particular r() does not need
to be convex (for example, it is not in (2)). However,
for computational reasons we will focus on a simple,
convex r() in the next section.

2. It allows higher-order interactions among unlabeled
data points (e.g. [15] and references therein), which is
important for certain applications like computer vi-
sion.

3. It allows assumptions to be combined. For instance,
one can create a hybrid of manifold regularization (1)
and semi-supervised support vector machines (2) by
r(f) = λ

∑

ij wij(f(xi)−f(xj))
2 +(1−λ)

∑

i max(1−
|f(xi)|, 0). Such combination has only briefly been at-
tempted in semi-supervised learning [16].

Next we focus on a special case of (4), where r() en-
codes domain knowledge about the relative order of
f(x) on unlabeled points. This leads to a novel semi-
supervised regression algorithm.

2 Semi-supervised regression with

order preferences

As a motivating example, consider the task of predict-
ing real estate prices. The price of a house varies signif-
icantly depending on its location and many other fac-
tors. However everything else being roughly equal, a
4-bedroom house is more expensive than a 3-bedroom
one. A domain expert can define ‘roughly equal’, and
claim that under such condition the feature number-of-
rooms determines the order of house prices. It is worth
noting that modeling such knowledge as positive corre-
lation between the original feature and the target can
be difficult in non-linear kernel regression, because of
kernel feature mapping. Besides, in general the cor-
relation may only hold for part of the range of the
feature value, and it would be inappropriate to force
the same correlation across the range. Instead, we can
encode such domain knowledge with order preferences



on unlabeled points in a semi-supervised learning set-
ting. That is, for all pairs of unlabeled points xi, xj

satisfying the ‘roughly equal’ condition, such knowl-
edge specifies the order between their target values
f(xi) and f(xj), even though their actual target val-
ues are unknown. Respecting the domain knowledge
then amounts to incorporating the order preferences
into semi-supervised learning. When labeled data is
scarce, these order preferences should improve our re-
gression model. A similar situation arises in predicting
Internet file transfer rates based on network properties
like round trip time, available bandwidth, queuing de-
lay, package loss rate, etc. The features have intuitive
impact on transfer rate, but the exact relation is highly
non-linear and unknown. We can however easily cre-
ate order preferences on unlabeled data using domain
knowledge. In general, order preferences can encode
potentially complex domain knowledge.

Let us formally define our regression problem. Be-
sides a labeled training set, we assume that we are
given p order preferences between pairs of unlabeled
points. An order preference is defined by a tuple
(i, j, d, w), with the interpretation that we would like
f(xi) − f(xj) ≥ d. As we see later, it is a preference
rather than a hard constraint. The scalar w ≥ 0 is
the weight (confidence) for the preference. Obviously
knowing the order preferences is much weaker than
knowing the labels of unlabeled points. We would like
to use the order preferences to improve regression.

It is possible to represent the order preferences as
directed edges in a graph [17]. The graph dif-
fers from graph-based semi-supervised learning (1):
the former expresses asymmetric order information,
while the latter expresses symmetric similarity in-
formation. However, order preferences can also en-
code similarity. For example, the two preferences
(i, j, 0, w), (j, i, 0, w) encode f(xi) = f(xj). More
generally (i, j,−ǫ, w), (j, i,−ǫ, w) encodes |f(xi) −
f(xj)| ≤ ǫ. It is also easy to encode a ≤ f(xi) −
f(xj) ≤ b. Unary preferences f(xi) ≤ g(xi), or
f(xi) = g(xi), or f(xi) ≥ g(xi), where g is some
given function, are special cases of order preference.
The unary preferences are closely related to the work
of Mangasarian et al. [18], which adds such domain
knowledge to kernel machines.

With the order preferences we now define the regu-
larization term r in (4) for semi-supervised regres-
sion. Intuitively if f satisfies all order preferences,
r should be zero; if f violates some, r increases. A
natural choice is to use a shifted hinge function: for
order preference (i, j, d, w), the regularization term is
w max(d− (f(xi)− f(xj)), 0). That is, it is zero if the
preference is satisfied; otherwise it is the amount the
preference falls short, weighted by w. We define the

regularization term r in (4) as the sum of shifted hinge
function on all order preferences:

r(f) =

p
∑

q=1

wq max(dq − (f(xiq) − f(xjq)), 0). (5)

We note that order preferences have been used in
ranking problems [19, 20, 21, 22]; in particular [23]
employed a similar shifted hinge function for rank-
ing. However they have not been used in regression
before. For c() in (4) we use the ǫ-insensitive loss
c(y, f) = |y − f |ǫ in support vector regression [24]:

|y − f |ǫ =

{

0 if |y − f | ≤ ǫ
|y − f | − ǫ otherwise.

(6)

If we further choose Ω(‖f‖H) = ‖f‖2
H

, we end up with
the optimization problem:

min
f∈H

∑l

i=1
|yi − f(xi)|ǫ + λ1‖f‖

2
H

+λ2

∑p

q=1
wq max(dq − (f(xiq) − f(xjq)), 0).(7)

The first two terms constitute standard support vector
regression [24]. The third term extends it to semi-
supervised learning. The optimization can be solved
by a quadratic program. However, we will not develop
(7) further in the paper. Instead, noticing both c()
and r() are piece-wise linear, we propose an alternative
optimization problem that can be solved by a linear
program.

3 The linear program formula

We replace ‖f‖2
H

in (7) with a linear term, in this case
the 1-norm of the dual parameters. The formulation
originates from generalized support vector machines
[25]. Such 1-norm support vector machines [26, 27, 28]
are comparable in performance to the standard 2-norm
support vector machines. Let K(x,x1:l) denote the
row vector of kernel values between a point x and the
labeled data x1:l. We represent our function f in dual
form by

f(x) = K(x,xl:l)α + α0 (8)

where α is a column vector of dual parameters, one for
each labeled point; α0 is a bias scalar. (8) amounts to
approximating the representer theorem (Theorem 1)
by setting dual parameters on unlabeled data to zero
for efficiency. One can also select a subset of unlabeled
points and add them to (8). Our semi-supervised re-
gression problem is

min
α,α0

1

l

∑l

i=1
|yi − f(xi)|ǫ + λ1‖α‖1

+λ2
1

p

∑p

q=1
wq max(dq − (f(xiq) − f(xjq)), 0).(9)

‖α‖1 =
∑l

i=1
|αi| is the 1-norm of α. The bias α0 is not

regularized. We transform (9) into a linear program



by introducing auxiliary variables for the three terms
respectively. Let 1 be the all-one vector, ξ an l-vector
of slack variables. Vector inequalities are element-wise.
In matrix notation the first term of (9) is equivalent
to

minα,α0,ξ
1

l
1⊤ξ

s.t. − ξ − ǫ1 ≤ y1:l − K(x1:l,x1:l)α − α01 ≤ ξ + ǫ1
ξ ≥ 0.

(10)
Let η be an l-vector. The second term of (9) is equiv-
alent to

minα,η λ11
⊤η

s.t. −η ≤ α ≤ η.
(11)

We do not need non-negativity constraints η ≥ 0 since
this is implied. For the third term, let ν be a p-
vector, d the difference vector, w the weight vector,
K(xi

1:p,x1:l) the p × l kernel matrix between the first
points in the order constraints and the labeled data,
and K(xj

1:p,x1:l) the same sized kernel matrix between
the second points in the order constraints and the la-
beled data. The third term is equivalent to

minα,ν
λ2

p
w⊤ν

s.t. (K(xi
1:p,x1:l) − K(xj

1:p,x1:l))α ≥ d − ν
ν ≥ 0.

(12)
Putting the three terms together, our final linear pro-
gram for semi-supervised learning with order prefer-
ences is

minα,α0,ξ,η,ν
1

l
1⊤ξ + λ11

⊤η + λ2

p
w⊤ν

s.t. − ξ − ǫ1 ≤ y1:l − K(x1:l,x1:l)α − α01 ≤ ξ + ǫ1
ξ ≥ 0
− η ≤ α ≤ η

(K(xi
1:p,x1:l) − K(xj

1:p,x1:l))α ≥ d − ν
ν ≥ 0.

(13)
This is a linear program with 3l + p + 1 variables and
5l + 2p constraints. The global optimal solution can
be easily found.

4 Experiments

We demonstrate the benefit of semi-supervised regres-
sion with three groups of experiments. We imple-
mented our linear program (13) using CPLEX. All
experiments ran quickly. In all experiments, ǫ in the ǫ-
insensitive loss (6) was set to 0, and preference weights
w were set to 1. We use the acronym SSL for (13), and
SVR for the corresponding supervised 1-norm support
vector regression (i.e., λ2 = 0). We also experimented
with standard 2-norm support vector regression us-

ing SVMlight [29], and the results were comparable to
SVR. Since our focus is on the effect of order preference
in improving SVR, we will use SVR as our baseline in
the experiments.

4.1 A toy example

First we use a toy example to illustrate order prefer-
ences. We constructed a polynomial function of degree
3 as our target (the dotted line in Figure 1(a)). We
randomly sampled three points (the open circles) from
the target function as training data and gave them to
SVR. For this experiment we used a linear kernel and
set λ1 = 0. Since there were not enough training data
points, SVR produced a fit (the dashed line) through
the training points but very different from the target.

We then randomly selected a pair of unlabeled points
−0.15, 0.30. Note they did not coincide with the train-
ing points. Without revealing the actual target values
at these points, we constructed an order preference us-
ing their true order: (0.30,−0.15, 0, 1), or equivalently
f(0.30)− f(−0.15) ≥ 0. Note we set d = 0 so that the
order preference specified their order but not the true
difference; hence it was weaker. We set w = 1. In Fig-
ure 1(a) the order preference is shown at the lower left
as a line linking the two unlabeled points (black dots).
The point with the larger value has a larger dot. SVR
happened to violate the order preference. With the
three training points and this order preference, SSL
produced a better fit (the solid line).

In Figure 1(b) we added more order preferences, gener-
ated similarly from random unlabeled point pairs and
their true order. Note some preferences were already
satisfied by SVR. The SSL function was further im-
proved. We consistently observed such behavior in re-
peated random trials.

4.2 Benchmark datasets

We experimented with five regression benchmark
datasets (Boston, Abalone, Computer, California,
Census; Available at http://www.liacc.up.pt/
∼ltorgo/Regression/DataSets.html), and report
results on all of them. One difficulty in working
with such standard datasets is creating sensible or-
der preferences on unlabeled data. Ideally the order
preferences would be prepared by experts with do-
main knowledge on the tasks. Lacking such knowl-
edge, we had to create simulated order preferences
from the relation of true values on unlabeled points
(more details later; Note, however, we never give out
the true values themselves). Therefore our results on
benchmark datasets should be viewed as ‘oracle ex-
periments.’ Nonetheless they are useful indications of
how well our semi-supervised regression would perform
given such domain knowledge.

For each benchmark dataset, we normalized its input
features to zero mean, unit variance. For categorical
features with k distinct values, we mapped them into



indicator vectors of length k. We used Radial Basis
Function (RBF) kernels k(x, x′) = exp(−σ‖x − x′‖2)
for all datasets. We used 5-fold cross validation to
find the optimal RBF bandwidth σ, and SVR 1-norm
weight λ1. The parameters were tuned for SVR on
a 9 × 9 logarithmic grid in 10−4 ≤ σ ≤ 104 and
10−4 ≤ λ1 ≤ 104. λ2 is a nuance parameter. In our
experiments we simply fixed it at 1. This is partly jus-
tified by the fact that in (9), the ‘shifted hinge func-
tion’ is on a similar scale to the ǫ-insensitive loss; both
incur a linear penalty when violated. Tuning λ2 might
produce better results than reported here, but with
limited labeled data (which has been used to tune λ1

and σ for SVR already) it is hard to do.

All experiments were repeated for 20 random trials.
Different algorithms shared the same random trials so
we could perform paired statistical tests. In each trial
we split the data into three parts: l labeled points,
u unlabeled points that were used to generate order
preferences, and test points that were the rest of the
dataset (see Table 1 Partition). Test points were un-
seen by either algorithm during training. All results we
report are test-set mean-absolute-error over the 20 tri-
als. Let t be the test set size. Test-set mean-absolute-
error is defined as

∑

i∈test |yi − f(xi)|/t. We address
the following questions:

Can order preferences improve regression? We
randomly sampled with replacement p = 1000 pairs
(xi, xj) from the u unlabeled points. For each sampled
pair, we generated an order preference from the true
target values yi, yj . Without loss of generality let yi ≥
yj . Our simulated order preference was

f(xi) − f(xj) ≥ 0.5(yi − yj). (14)

Let us explain our order preferences. We could have
created the ‘perfect’ order preferences with the pair:
f(xi) − f(xj) ≥ yi − yj and f(xi) − f(xj) ≤ yi − yj .
They together encode f(xi)− f(xj) = yi − yj . But we
felt it might be difficult to know the exact difference
yi − yj in real tasks. So we chose not to encode equal-
ity preferences. With inequality preferences, we could
have set f(xi) − f(xj) ≥ 0. It would only encode or-
der, without any information on the actual difference.
But in real tasks one might have some rough estimate
of the difference, and (14) was meant to simulate this
estimate. Another alternative, f(xi)−f(xj) ≥ yi−yj ,
actually produces slightly inferior preferences as we
will soon see. Table 1 compares the test-set mean-
absolute-error of SVR and SSL. The differences on
all datasets are significant with a paired t-test at the
0.01 level. We conclude that, with the order prefer-
ences (14), SSL significantly improves regression per-
formance over SVR.

What if we change the number of order pref-

erences p? In semi-supervised learning one expects
a larger gain with more unlabeled data, or the num-
ber of order preferences p. We systematically varied p
from 10 to 5000, keeping everything else the same as
in Table 1. Figure 2(a) shows that it was indeed the
case. A very small p sometimes hurts SSL, making it
worse than SVR. But as p grows larger SSL rapidly
improves, and levels off at around p = 100. This indi-
cates that one needs only a moderate amount of order
preferences to enjoy the benefit.

What if we change the labeled data size l?
In semi-supervised learning the benefit of unlabeled
data is expected to decrease with more labeled data.
We fixed the number of order preferences p = 1000,
and systematically varied l. As expected, Figure 2(b)
shows that SSL is most useful when l is small, and the
benefit diminishes as l grows.

How precise do the order preferences need to
be? Extending (14), one can define order preferences
as f(xi) − f(xj) ≥ β(yi − yj) where β controls how
precise they are. As mentioned earlier, β = 0 only sup-
plies order information, and a larger β estimates the
differences. We varied β from 0 to 2 (over-estimate)
for the experiments in Table 1. Figure 2(c) shows that
with only the order (β = 0) SSL already outperformed
SVR. With a conservative estimate of the differences
(0 < β < 1) SSL was even better. The value β = 1
was not as good since f(xi) − f(xj) ≥ yi − yj would
selectively penalize f(xi) = f(xj)+yi −yj − δ but not
f(xi) = f(xj) + yi − yj + δ for any δ > 0, thus intro-
ducing a bias. Finally over-estimating the differences
(β = 2) was clearly bad. In summary, one wants to
use a conservative estimate 0 ≤ β < 1. This is advan-
tageous in practice, since one does not need to know
the precise differences, and can err on the safe side.

4.3 Sentiment analysis in movie reviews

Finally, we experimented with sentiment analysis in
movie reviews. Given a movie review text document x,
we would like to predict f(x), the rating (e.g., ‘4 stars’)
given to the movie by the reviewer. We assume that by
looking at the wording of unlabeled reviews, one can
determine that some movies will likely be rated higher
than others (even though we do not know their actual
ratings). These are incorporated as order preferences.
We worked on the “scale dataset v1.0” with continuous
ratings, available at http://www.cs.cornell.edu/

people/pabo/movie-review-data/ and first used in
[30]. It contains four authors with 1770, 902, 1307,
1027 reviews respectively. For each author, we var-
ied l ∈ {30, 60, 120}, and let u = 500, p = 500. The
remaining reviews were test examples. Each experi-
ment was repeated for 20 random trials. All reported
results are test-set mean-absolute-error. Each review



Table 1: Benchmark data. All differences are statistically significant.

Dataset Partition Mean absolute error Improvement
dim l/u/test SVR SSL

Boston 13 20/200/286 4.780 ± 1.351 3.511 ± 0.376 27%
Abalone 8 30/1000/3147 1.856 ± 0.180 1.685 ± 0.102 9%
Computer 21 30/1000/7162 7.373 ± 3.445 5.364 ± 0.998 27%
California 8 60/1000/19580 58268 ± 4435 52120 ± 1843 11%
Census 16 60/1000/21724 24992 ± 1377 23241 ± 901 7%

document was represented as a word-presence vector,
normalized to sum to 1. We used a linear kernel, set
λ1 = 10−7 and λ2 = 1.

As a proxy for expert knowledge, we used a completely
separate “snippet dataset” also located at the above
URL. The snippet dataset is very different from the
scale dataset: it contains single punch line sentences
(snippets) instead of full reviews; the snippets have
binary positive/negative labels instead of continuous
ratings; it comes from different authors on different
movies. We trained a standard binary, linear-kernel

SVM classifier g on the snippet data using SVMlight.
We then applied g on random pairs of unlabeled movie
reviews xi, xj in the scale dataset. The order of the
continuous margin output g(xi), g(xj) serves as our
proxy for expert knowledge. Since this is a very crude
and noisy estimate, we created an order preference
(i, j, 0, 1) only if g(xi) − g(xj) > 0.25, where 0.25 is
an arbitrary threshold. Note we set d = 0 since we do
not know the difference in rating. Table 4.3 presents
the results of our sentiment analysis experiments. As
expected, SSL is most useful when l is small, and the
gain over SVR gradually diminishes with larger l. SSL
leads to improvements in all cases, and the differences
are significant (*) with paired t-tests at the 0.05 level
in about half of the cases1. We expect better order
preferences from advanced natural language process-
ing (e.g., parsing) to bring larger improvements.

5 Conclusions

We presented a general semi-supervised learning
framework. As a special case we proposed a novel
semi-supervised regression algorithm with order pref-
erences, formulated as a linear program. It can be eas-
ily extended beyond regression, e.g., to ordinal classi-
fication [31]. We believe the real power of the general
framework (4) lies in its ability to incorporate arbi-
trary, higher-order regularization terms. Future work

1As a sanity check, we also experimented with wrong
order preferences by intentionally flipping all preferences
(i, j, 0, 1) into (j, i, 0, 1). As expected, SSL with wrong or-
ders became worse than SVR by 1% – 13% for different
authors at l = 120.

on this will expand the frontier of semi-supervised
learning.
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Figure 1: A toy example comparing SVR and SSL, showing the benefit of order preferences.
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(a) The effect of the number of order preferences p (x-axis).
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(b) The effect of labeled data size l (x-axis).
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(c) The effect of the difference scaling factor β (x-axis).

Figure 2: The effect of various parameters on SSL on the Benchmark data. y-axis is test-set mean-absolute-error.


