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Abstract

We propose a novel kernel regression algorithm which
takes into account order preferences on unlabeled data.
Such preferences have the form that point z; has a
larger target value than that of z2, although the tar-
get values for x1,x2 are unknown. The order pref-
erences can be viewed as side information or a form
of weak labels, and our algorithm can be related to
semi-supervised learning. Learning consists of formu-
lating the order preferences as additional regularization
in a risk minimization framework. We define a linear
program to effectively solve the optimization problem.
Experiments on benchmark datasets, sentiment analy-
sis, and housing price problems show that the proposed
algorithm outperforms standard regression, even when
the order preferences are noisy.

Introduction

We propose a novel algorithm for kernel regression. The
proposed regression algorithm is able to incorporate domain
knowledge about the relative order of target values on un-
labeled examples. As a motivating example, consider the
task of predicting real estate prices. The price of a house
varies significantly depending on its location and many other
factors. However, a domain expert may determine that ev-
erything being “roughly equal,” the feature number of bed-
rooms determines the order of house prices. For instance, a
4-bedroom house is more expensive than a 3-bedroom one.

At first glance, it may appear that such knowledge can be
enforced by a positive correlation between the feature and
the target. However, modeling such knowledge as positive
correlation can be difficult in non-linear kernel regression,
because of the non-linear feature mapping. Besides, in gen-
eral a correlation may only hold for part of the range of the
feature value, and it would be inappropriate to force the cor-
relation across the range. We would like a more general ap-
proach to capture such knowledge.

*We thank Grace Wahba for discussions on the representer the-
orem; Olvi Mangasarian, Edward Wild and Michael Ferris on opti-
mization; and Wei Chu on the benchmark datasets. Research sup-
ported in part by Wisconsin Alumni Research Foundation.
Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose to encode such domain knowledge with or-
der preferences on unlabeled examples. That is, for all pairs
of unlabeled examples x;, x; satisfying the “roughly equal”
condition, such domain knowledge specifies the order be-
tween their target values f(x;) and f(x;), even though their
actual target values are unknown. Respecting the domain
knowledge then amounts to incorporating the order prefer-
ences into a kernel regression framework. When labeled
data is scarce, these order preferences should improve our
regression model.

Another practical application of our approach is in pre-
dicting Internet file transfer rates based on network proper-
ties like round trip time, available bandwidth, queuing delay,
package loss rate, and so on (Mizra et al. 2007). The fea-
tures have intuitive impact on transfer rate, but the exact re-
lation is highly non-linear and unknown. We can, however,
easily create order preferences on unlabeled data using do-
main knowledge. In general, order preferences can encode
certain complex domain knowledge.

Regression with Order Preferences

Let us formally define our regression problem. In addition
to a labeled training set {(x1,v1),. .., (x;, y1)}, we assume
that we are given p order preferences between pairs of un-
labeled examples. An order preference is defined by a tu-
ple (i,7,d,w), with the interpretation that we would like
f(x;) — f(xzj) > d. As discussed below, we encode it as
a soft preference rather than a hard constraint. The scalar
w > 0 is the weight (confidence) for the preference. Ob-
viously knowing the order preferences is much weaker than
knowing the labels of the unlabeled examples. In this sense
the preferences are a form of weakly labeled data or side in-
formation. We would like to use them to improve regression.

It is possible to represent the order preferences as di-
rected edges in a graph (Dekel, Manning, & Singer 2004),
where the edges represent asymmetric order information.
However, it is worth noting that order preferences can
also encode similarity. For example, the two preferences
(i,,0,w), (j,i, 0, w) encode f(z;) — f(x;). More gen-
erally, the two preferences (4, j, —e€, w), (4, ¢, —€, w) encode
closeness: |f(z;) — f(x;)] < e. Itis also easy to encode
a < f(z;) — f(z;) < b. As special cases of order prefer-
ence, one can also encode unary preferences f(x;) < g(x;),
flx;) = g(a;), or f(x;) > g(x;), where g is some given



function. The unary preferences are closely related to the
work of Mangasarian et al. (2004), which adds them to ker-
nel machines.

Our approach to add order preferences to kernel regres-
sion is to treat them as regularization. Recall the standard
risk minimization framework for kernel regression is

min 3 e(wi v f(@) +AQE). ()
where H is the Reproducing Kernel Hilbert Space (RKHS)
induced by some kernel, ¢() is a loss function for regres-
sion, A is a weight parameter on the regularizer, and €2() is a
monotonic increasing function.

With the order preferences we now define an additional
regularization term r(z, f). Intuitively if the function f sat-
isfies all order preferences, r should be zero; if f violates
some, r increases. A natural choice is to use a shifted hinge
function: for order preference (i, j,d, w), the regulariza-
tion term for this single preference is w max(d — (f(z;) —
f(z;)),0). That is, it is zero if the preference is satis-
fied; otherwise it is the amount the preference is violated,
weighted by w. As a side note, we point out that if we have
two preferences (4, j, —€,w), (,4, —¢, w), this would form
the e-insensitive loss (Smola & Scholkopf 2004).

We define the regularization term r(z, f) as the sum of
shifted hinge function on all order preferences:

r(z, f) = qu max(dg — (f(ziq) — f(254)),0). (2)
qg=1

We note that order preferences have been used in ranking
problems (Herbrich, Obermayer, & Graepel 2000; Burges
et al. 2005; Yu et al. 2006; Chu & Ghahramani 2005); in
particular (Joachims 2002) employed a similar shifted hinge
function for ranking. However they have not been used in
regression before. Our problem is

min 370 e(wi i f (@) + MQUEll) + Aer(, £)3)

A Linear Program Formulation
To fully specify the above problem, we choose to use the

e-insensitive loss ¢(x,y, f) = |y — f]|e in support vector
regression:
_Jo ifly—fl<e
ly = fle = { ly — f] — € otherwise. “)

We further choose Q(|| f||) to be a linear function, in this
case the 1-norm of the dual parameters discussed below, re-
sulting in 1-norm support vector machines (Bradley & Man-
gasarian 1998; Bi et al. 2003; Zhu et al. 2004). The formu-
lation originates from generalized support vector machines
(Mangasarian 2000). Such 1-norm support vector machines
are comparable in performance to the standard 2-norm sup-
port vector machines, but with the advantage that they can be
solved as linear programs, which tends to be more efficient.

The solution can be characterized by a representer the-
orem (Kimeldorf & Wahba 1971; Scholkopf, Herbrich, &
Smola 2001): The minimizer f* € H admits the form

f(x) = Ziﬁp ;K (z;,x), where x; ranges from the la-
beled examples to the unlabeled examples involved in the p
order preferences. The proof uses the standard orthogonality
argument, and is omitted for space consideration.

Let K (x,x1.;) denote the row vector of kernel values be-
tween a point = and the labeled data x;.;. We represent our
function f in dual form by

f(z) = K(z,x11)o + ag &)

where « is a column vector of dual parameters, one for each
labeled point; « is a bias scalar. This amounts to approx-
imating the representer theorem by setting dual parameters
not on the labeled data to zero for a sparse representation.
Our linear-program regression problem is

. !
min 13w = Fl@a)le + Mllalls +

>\21l, 2521 wgmax(dg — (f(ziqg) — f(x;4)),0), (6)

where ||a||; = 22:1 |cv;| is the 1-norm of «v. The bias «y is
not regularized.

We transform (6) into a standard linear program by intro-
ducing auxiliary variables for the three terms respectively.
Let 1 be the all-one vector, £ an [-vector of slack variables,
1 an [-vector, v a p-vector, d the difference vector, w the
weight vector, K (x}.,,X1,) the p x [ kernel matrix between
the first points in the order constraints and the labeled data,
and K (X{:p, x1.;) the same sized kernel matrix between the
second points in the order constraints and the labeled data.
Vector inequalities are element-wise. With standard trans-
form techniques, our linear program for kernel regression
with order preferences can be written as:

MiNg, og,&,m,0 %le +M1Tn+ %WTV
st. =& —el <y — K(x1,X1)a — gl < +el
£>0
—n<asn
(K (x}.ps X12) = K (X1, X12)) 2 d = v
v > 0.
(7
This is a linear program with 3/ 4+ p + 1 variables and 5] +
2p constraints. The global optimal solution can be found
efficiently.

Connections to Semi-Supervised Learning

It is instructive to note that several semi-supervised learn-
ing approaches can be expressed in a similar form as (3). In
particular, manifold regularization (Belkin, Niyogi, & Sind-
hwani 2004) uses

r, f) =Y wii(fxi) — fx5))%
i,jEU

where U is the unlabeled data, and w;; represents the
similarity between x;,x; based on domain knowledge.
S3VMs (Collobert et al. 2006; Joachims 1999b) uses

7'((E,f) = Zmax(l - ‘f(xz)lvo)

iceU



to attempt to push unlabeled examples out of the margin.
Co-train style multiview learning (Brefeld et al. 2006;
Sindhwani, Niyogi, & Belkin 2005) uses

M
r(z, f) = Z Z(fu(fz) - fv(xi))Q

u,v=11€U

for the M different views, to encourage them to make the
same prediction on the same unlabeled example. These
methods and our order preferences all encode some do-
main knowledge other than labels. One might establish
many order preferences on unlabeled data. For example,
higher bandwidth, shorter delay and fewer package loss
leads to higher file transfer rates. They can all be viewed
as unlabeled-data-dependent regularizers r(z, f). Our order
preferences may contain slightly stronger information, and
we view them as filling in the continuum between super-
vised learning and semi-supervised learning. It is possible
to combine order preferences with existing semi-supervised
learning methods by adding the respective r(x, f) terms to-
gether (with appropriate weights) to form a new regularizer.

Experiments

We demonstrate the benefit of order preferences with four
groups of experiments. We implemented our linear program
(7) using CPLEX. All experiments ran quickly. Solving the
LP for each trial takes 0.2 to 0.5 seconds depending on the
number of order preferences and unlabeled data size. In all
experiments, € in the e-insensitive loss (4) was set to 0, and
preference weights w were set to 1. We use the acronym
SSL for (7), and SVR for the corresponding standard 1-norm
support vector regression (i.e., Ao = 0). We also experi-
mented with standard 2-norm support vector regression us-

ing svmlight (Joachims 1999a), and the results were com-
parable to SVR and not reported here.

A Toy Example

First we use a toy example to illustrate order preferences.
We constructed a polynomial function of degree 3 as our
target (the dotted line in Figure 1(a)). We randomly sampled
three points (the open circles) from the target function as
training data and gave them to SVR. For this experiment we
set A\; = 0. Since there were not enough training data points,
SVR produced a fit (the dashed line) through the training
points but very different from the target.

We then randomly selected a pair of unlabeled points
—0.15,0.30. Note they did not coincide with the train-
ing points. Without revealing the actual target values at
these points, we constructed an order preference using their
true order: (0.30,—0.15,0,1), or equivalently f(0.30) —
f(—=0.15) > 0. Note we set d = 0 so that the order prefer-
ence specified their order but not the true difference; hence it
was weaker. We set w = 1. In Figure 1(a) the order prefer-
ence is shown at the lower left as a line linking the two unla-
beled points (black dots). The point with the larger value has
a larger dot. SVR happened to violate the order preference.
With the three training points and this order preference, SSL
produced a better fit (the solid line).

In Figure 1(b) we added more order preferences, gener-
ated similarly from random unlabeled point pairs and their
true order. Note some preferences were already satisfied by
SVR. The SSL function was further improved. We consis-
tently observed such behavior in repeated random trials.

Benchmark Datasets

We experimented with five regression benchmark datasets
(Boston, Abalone, Computer, California, Census; Available
at http://www.niaad.liacc.up.pt/~ltorgo/
Regression/DataSets.html), and report results on
all of them. One difficulty in working with such standard
datasets is creating sensible order preferences on unlabeled
data. Ideally the order preferences would be prepared by
experts with domain knowledge on the tasks. Lacking such
experts, we had to create simulated order preferences from
the relation of true values on unlabeled points (more details
later; Note, however, we never give out the true values
themselves). Therefore our results on benchmark datasets
should be viewed as “oracle experiments.” Nonetheless they
are useful indications of how well our regression would
perform given such domain knowledge.

For each benchmark dataset, we normalized its input fea-
tures to zero mean, unit variance. For categorical features
with k distinct values, we mapped them into indicator vec-
tors of length k. We used Radial Basis Function (RBF) ker-
nels k(x,2") = exp(—o||z — 2’||?) for all datasets. We used
5-fold cross validation to find the optimal RBF bandwidth
o, and SVR 1-norm weight ;. The parameters were tuned
for SVR on a 9 x 9 logarithmic grid in 10~* < ¢ < 10* and
10~% < Ay < 10*. We simply fixed Ao at 1. This is partly
justified by the fact that in (6), the ‘shifted hinge function’
is on a similar scale to the e-insensitive loss; both incur a
linear penalty when violated. Tuning Ao might produce bet-
ter results than reported here, but with limited labeled data
(which has been used to tune A; and o for SVR already) it
is hard to do.

All experiments were repeated for 20 random trials. Dif-
ferent algorithms shared the same random trials so we could
perform paired statistical tests. In each trial we split the
data into three parts: [ labeled points, u unlabeled points
that were used to generate order preferences, and test points
that were the rest of the dataset (see Table 1 Partition). Test
points were unseen by either algorithm during training. All
results we report are test-set mean-absolute-error over the
20 trials. Let ¢ be the test set size. Test-set mean-absolute-
error is defined as ), teqt ¥ — f(2:)|/t. We address the
following questions:

Can order preferences improve regression? We ran-
domly sampled with replacement p = 1000 pairs (z;, ;)
from the u unlabeled points. For each sampled pair, we gen-
erated an order preference from the true target values y;, y;.
Without loss of generality let 3; > ;. Our simulated order
preference was

fxi) = f(x5) > 0.5(y; — ;). ®)

Let us explain our order preferences. We could have cre-
ated the ‘perfect’ order preferences with the pair: f(x;) —

f(x5) > yi—yjand f(x;)— f(x;) < yi—y;. They together
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Figure 1: A toy example comparing SVR and SSL, showing the benefit of order preferences.

encode f(x;) — f(x;) = y; — y;. But in real tasks it might
be difficult to know the exact difference y; — y;, so we did
not do that. On the other hand, with inequality preferences
we could have set f(x;) — f(z;) > 0. It would only encode
order, without any information on the actual difference. But
in real tasks one might have some rough estimate of the dif-
ference, and (8) was meant to simulate this estimate. Table 1
compares the test-set mean-absolute-error of SVR and SSL.
The differences on all datasets are significant with a paired
t-test at the 0.01 level. We conclude that, with the order
preferences (8), SSL significantly improves regression per-
formance over SVR.

What if we change the number of order preferences p?
One expects a larger gain with more order preferences p. We
systematically varied p from 10 to 5000, keeping everything
else the same as in Table 1. Figure 2(a) shows that it was
indeed the case. A very small p sometimes hurts SSL, mak-
ing it worse than SVR. But as p grows larger SSL rapidly
improves, and levels off at around p = 100. This indicates
that one needs only a moderate amount of order preferences
to enjoy the benefit.

What if we change the labeled data size [? The bene-
fit of order preferences is expected to diminish with more
labeled data. We fixed the number of order preferences
p = 1000, and systematically varied [. As expected, Fig-
ure 2(b) shows that SSL is most useful when [ is small, and
the benefit reduces as [ grows.

How precise do the order preferences need to be? Ex-
tending (8), one can define order preferences as f(x;) —
f(z;) > B(y; — y;) where 3 controls how precise they are.
As mentioned earlier, 3 = 0 only supplies order informa-
tion, and a larger § estimates the differences. We varied 0
from O to 2 (over-estimate) for the experiments in Table 1.
Figure 2(c) shows that with only the order (3 = 0) SSL al-
ready outperformed SVR. With a conservative estimate of
the differences (0 < 3 < 1) SSL was even better. However
larger (3 seems to be inferior. This might be advantageous in
practice, since one does not need to know the precise differ-
ences, and can err on the safe side.

Sentiment Analysis in Movie Reviews

We next experimented with the real-world problem of sen-
timent analysis in movie reviews. Given a movie review
text document x, we would like to predict f(z), the rating
(e.g., ‘4 stars’) given to the movie by the reviewer. We as-
sume that by looking at the wording of unlabeled reviews,
one can determine that some movies will likely be rated
higher than others (even though we do not know their ac-
tual ratings). These are incorporated as order preferences.
We worked on the “scale dataset v1.0” with continuous
ratings, available at http://www.cs.cornell.edu/
people/pabo/movie-review—data/ and first used
in (Pang & Lee 2005). It contains four authors with 1770,
902, 1307, 1027 reviews respectively. For each author, we
varied [ € {30, 60,120}, and let u = 500, p = 500. The re-
maining reviews were test examples. Each experiment was
repeated for 20 random trials. All reported results are test-
set mean-absolute-error. Each review document was repre-
sented as a word-presence vector, normalized to sum to 1.
We used a linear kernel, set \; = 10~7 and Ay = 1.

As a proxy for expert knowledge, we used a completely
separate “‘snippet dataset” also located at the above URL.
The snippet dataset is very different from the scale dataset:
it contains single punch line sentences (snippets) instead
of full reviews; the snippets have binary positive/negative
labels instead of continuous ratings; it comes from differ-
ent authors on different movies. We trained a standard bi-
nary, linear-kernel SVM classifier g on the snippet data us-

ing SVMIENt We then applied ¢ on random pairs of un-
labeled movie reviews x;, z; in the scale dataset. The or-
der of the continuous margin output g(z;), g(x;) serves as
our proxy for expert knowledge'. Since this is a very crude
and noisy estimate, we created an order preference (i, 7,0, 1)
only if g(z;) — g(z;) > 0.25, where 0.25 is an arbitrary
threshold. Note we set d = 0 since we do not know the

'Our use of g simulates a layman (not an expert) reading two
reviews and saying “the author liked this one more than that one.”
This layman does not have enough experience to predict the actual
star ratings, but is able to tell that one sounds more positive than
the other.



Table 1: Benchmark data. All improvements are statistically significant.

Dataset Partition Mean absolute error Improvement
dim [/u/test SVR SSL
Boston 13 20/200/286 4780 &+ 1.351 3.511 +£0.376 27%
Abalone 8  30/1000/3147 1.856 £ 0.180 1.685 £ 0.102 9%
Computer 21 30/1000/7162 | 7.373 £3.445 5.364 £+ 0.998 27%
California 8  60/1000/19580 | 58268 + 4435 52120 + 1843 11%
Census 16 60/1000/21724 | 24992 + 1377 23241 4+ 901 7%
Boston Abalone Computer California Census
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Figure 2: The effect of various parameters on SSL on the Benchmark data. y-axis is test-set mean-absolute-error.

difference in rating. Table 2 presents the results of our senti-
ment analysis experiments. As expected, SSL is most useful
when [ is small, and the gain over SVR gradually diminishes
with larger [. SSL leads to improvements in all cases, and
the differences are significant (*) with paired ¢-tests at the
0.05 level in about half of the cases®>. We expect better or-
der preferences from advanced natural language processing
(e.g., parsing) to bring larger improvements.

Predicting Housing Prices Using Heuristic Order
Preferences

As a final real-world experiment, we played the role of real
estate experts to carry out the scenario introduced in the be-
ginning of the paper. We used the same California dataset
in Table 1, but this time with order preferences derived from

2As a sanity check, we also experimented with wrong order
preferences by intentionally flipping all preferences (i, 7, 0, 1) into
(4,7,0,1). As expected, SSL with wrong orders became worse
than SVR by 1% — 13% for different authors at { = 120.

domain knowledge instead of oracles. The task is to predict
the median house value for 20640 groups of houses through-
out the state. With other factors being roughly equal, we
believe the value is largely determined by the number of
bedrooms. We decided that two groups are “roughly equal”
if they are located within 25 miles of each other (i.e., they
are in the same community), their median house ages dif-
fer by at most 10 years, and they are inhabited by residents
whose median income level differs by at most $1000. We re-
peated the experimental setup in the benchmark section, and
for each random trial, we created approximately 1200 or-
der preferences. Specifically, for all pairs of housing groups
in the labeled and unlabeled data that satisfy the “roughly
equal” criteria, we created a preference that the group with
more bedrooms has a higher target value. We omitted pref-
erences between two labeled groups, since they are either re-
dundant or incorrect. We set w = 1 and d = 0, and used the
same \ parameters as in the benchmark section. Note that
the order preferences are created without any knowledge of
the actual target values, and that the relations we constructed



Table 2: Movie review sentiment analysis mean-absolute-error for each author.

Dataset /u/test SVR SSL Improvement
30/500/1240 | 0.1383 +0.0072 | 0.1362 £ 0.0028 1.5%

Author (a) 60/500/1210 | 0.1323 £0.0042 | 0.1311 &£ 0.0025 0.9%
120/500/1150 | 0.1224 + 0.0042 | 0.1219 % 0.0024 0.4%

30/500/372 0.1645 £ 0.0146 | 0.1540 % 0.0046 *6.4%

Author (b) 60/500/342 0.1514 £ 0.0063 | 0.1496 £ 0.0046 *1.2%
120/500/282 | 0.1431 £ 0.0063 | 0.1416 £ 0.0062 *1.0%

30/500/777 0.1405 £ 0.0163 | 0.1357 &= 0.0070 3.4%

Author (c) 60/500/747 0.1268 £ 0.0072 | 0.1258 + 0.0038 0.8%
120/500/687 | 0.1150 £ 0.0048 | 0.1138 £ 0.0047 1.0%

30/500/497 0.1433 £ 0.0151 | 0.1350 £ 0.0052 *5.8%

Author (d) 60/500/467 0.1366 £ 0.0104 | 0.1293 £ 0.0037 *5.3%
120/500/407 | 0.1256 £ 0.0092 | 0.1226 + 0.0038 2.4%

are highly non-linear. We found that the heuristic prefer-

Collobert, R.; Sinz, F.; Weston, J.; and Bottou, L. 2006. Large

ences led to a 6% reduction in test-set mean-absolute-error
in SSL (54664 + 2521) compared to SVR (58268 =+ 4435).
The difference is statistically significant with a paired ¢-test
at the 0.01 level.

This experiment demonstrates that order preferences
with some noise can still be beneficial. In fact, a post-
experimental analysis of the created order preferences re-
vealed that only 70% were actually accurate (i.e., 30% of
“roughly equal” housing group pairs do not have the pre-
dicted relation based on bedrooms). We expect our method
to extend well to new tasks (e.g., predicting Internet file
transfer rates) where large numbers of reasonably accurate
order preferences can be generated automatically.

Conclusions

We presented a novel kernel regression algorithm with order
preferences, formulated as a linear program. We showed that
even with noisy, heuristic order preferences, the regression
performance is improved. Our algorithm can be easily ex-
tended beyond regression. For example, one future direction
is to apply order preferences to ordinal classification (Chu &
Keerthi 2005).
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