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A Derivative of (6) w.r.t. 8

Give a censored list a, define a mapping o that maps a state to its position in a; that is, o(a;) = .

Let N(®) = (I — Q®))~!. Hereafter, we drop the superscript (k) from Q, R and N when it’s clear
from the context.

Using (A1) e/0A;j = —(A71) ki (A™1) 4, the following identity becomes useful:

ONke _ O((1= Q)™ Hke

0Qi; 0Qi;
(I -Q) ke (I — Q)eq
B Czd: I - Q)ea 0Qij

- Z (1— ke (T — Q)il)déﬂ{czi,d:j}
= ((I—Q) Dki(@T=Q)™)je
= Nklel

The derivative of P w.r.t. 3 is given as follows:
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The derivative of log P(axr1 | a1.x) with respect to 3 is
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We need to compute
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where (i) < k means item ¢ appeared among the first k items in the censored list a.

Then,
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Putting everything together,
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for all i # j.

B The Proof of Theorem

We first claim that (i) there must be a recurrent state ¢ in a censored list where ¢ € W), for some k.
Then, it suffices to show that given (i) is true, (ii) recurrent states outside W}, cannot appear, (iii)
every states in W}, must appear, and (iv) a transient state cannot appear after a recurrent state.

(i): suppose there is no recurrent state in a censored list a = (a1.5s). Then, every state a;, i € [M],
is a transient state. Since the underlying random walk runs indefinitely in finite state space, there
must be a state a;, j € [M], that is visited infinitely many times. This contradicts the fact that a; is
a transient state.

Suppose a recurrent state ¢ € W, was visited. Then,
(ii): the random walk cannot escape W}, since W is closed.
(iii): the random walk will reach to every state in W, in finite time since Wy, is finite and irreducible.

(iv): the same reason as (iii).
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C The Proof of Theorem 4]

It suffices to show that P(ax+1 | a1.x;P) = Plak+1 | a1.x;P’), where a = (ay,...,ap) and
k < M — 1. Define submatrices (Q, R) and (Q’, R’) from P and P’, respectively, as in (Z). Note
that Q' = diag(q1.x) + (I — diag(¢1.£))Q and R’ = (I — diag(q1.x))R.
P(as1 | ark; P') = (T - diag(gix) — (T — diag(q14))Q) ™" (I — diag(q1.4)) R
= (I- Q) "(I— diag(q1.x))~ (I — diag(q1.x))R
= P(ag 41 | a1 P)

D The Proof of Theorem 3]

Suppose (7, P) # (7', P’). We show that there exists a censored list a such that P(a;w,P) #
P(a;«', P’).

Case1: w # «'.

It follows that 7; # 7} for some 4. Note that the marginal probability of observing ¢ as the first item
in a censored listis > P(a; 7, P) = 7;. Then,

a€eD:a1=1
Z Pla;m,P) =m # 7, = Z P(a; 7', P).
acD:a1=1 acD:a1=1

which implies that there exists a censored list a for which P(a; w, P) # P(a; 7/, P’).
Case2: m = ' but P # P’.

It follows that P;; # P/ ; for some ¢ and j. Then, we compute the marginal probability of observing
(i, 7) as the first two items in a censored list, which results in

Z P(a; 7, P) = m Pyj # mPj; = Z P(a;w', P’).

al =1 aq =1
acD: ; acD: ;
€ az2=j € a2=j

Then, there exists a censored list a for which P(a; 7, P) # P(a; «’, P’).

E Results Required for Theorem [6]

Throughout, assume @ = (w ', Py.,...,P,.)". Let supp(8) be the set of nonzero dimensions of 6:
supp(@) = {i | 6; > 0}. Lemmashows conditions on which Q*(8) and Q,,(8) are above —oc.
Lemma 1. Assume[Al] Then,
supp(0) 2 supp(0*) < Q*(6) > —o0 (7)
supp(0) 2 supp(6*) = O (6) > —00,Vm. ®)

Proof. Define two vectors of probabilities w.rt. 6 and 6*: q = [ga = P(a;0)],.p and q* =
[¢z = P(a;0*)],,p- Note that

supp(q) 2 supp(q”) <= Q7(6) > —oo
by the definition of Q*(8). Thus, for (7)), it suffices to show that

supp(@) 2 supp(6*) <= supp(q) 2 supp(q”).

( = ) The LHS implies that the directed graph enduced by 6 includes the graph enduced by 6*;
a path that is possible w.r.t. 8* is also possible w.r.t. 8. Recall that a list is generated by a random
walk. Let a € supp(q*). There exists a random walk under 6* that generates a. Then, the same
random walk is also possible under 6, which implies a € supp(q).

( <= ) Suppose the LHS is false. Then, there exists (%, j) s.t. P;; = 0 and P > 0. Consider a list
a such that it has nonzero probability w.r.t. 8* (that is, ¢ > 0), and its first two items are ¢ then j.
Since P;; = 0, ga = 0. However, the RHS implies that g, > 0 since g; > 0: a contradiction.
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For (§),
supp(8) 2 supp(6*) = Q*(8) > —co = 0,,(8) > —o0, Vm,

where the last implication is due to the fact that a censored list a(*) that appears in Qm(B) is gener-
ated by 0*, so the term log P(a("); §) also appears in Q*(6).

O
Lemma 2. Assume[Al] Then, 0* is the unique maximizer of Q*(6).
Proof. 1If 0 satisfies supp(0) 2 supp(0*), then Q*(0) = —oo by Lemma so such @ cannot

be a maximizer. Thus, it is safe to restrict our attention to €’s whose support include that of 68*:
supp(6) 2 supp(6*).
Recall the definition of Q*(6):

Q*(0) = > P(a;0%)logP(a; 0) & —KL(6"||0),
aeD
where KL(6*||0) is well defined since supp(6) 2 supp(6*). Due to the identifiability of the model

(Theorem [5)) and the unique minimizer property of the KL-divergence, 6* is the unique maximizer.
O

We denote by decomp(0) = {T', W1, ..., Wk} the decomposition enduced by € as in Theorem|[1]}

Lemma 3. supp(ém) D supp(0*) for large enough m. Furthermore, decomp(ém) = decomp(0*)
for large enough m.

Proof. Note that due to the strong law of large numbers, a list a is valid in the true model 8* must
appear in D, for large enough m. Since the number of censored lists that can be generated by 8™ is
finite, one observes every valid censored list in the true model 6*; that is, there exists m’ such that

m>m' = {a|a€ D,,}={a|P(a;0") > 0}.

For the first statement, assume that m > m/. Since we observe every valid list in 8*, by the definition
of Q,,(0), the following holds true:

VO € O, 0,,(0) > —c0 < Q*(6) > —cc.
Then, using LemmalI]

o~

Om(Bm) > —00 = Q*(B,,) > —00 = supp(B,,) 2 supp(6*).

For the second statement, assume m > m/. Let decomp(ém) = {T, /V[71,...,/V[7f(} and

decomp(0*) = {T*,W{,...,W}..}. Furthermore, define 7(¢) to be the index of the closed ir-
reducible set in decomp(8,,,) to which i belongs, and define 7* (%) similary.

Suppose that the data D,,, contains every valid list in 8%, but decomp( m) 7 decomp(@*) There
are four cases. In each case, we show that there exists a list that is valid in 0* but not in Om, which
means that the log likelihood of 0 is —oo. This is a contradiction in that 0 is the MLE.

Case 1 : ds; s.t. s1 is transient in 0 but recurrent in 0*.

Let W} be the closed irreducible set to which s; belongs and L = \Wk |. Use 6* to start a random
walk from s; and generate a censored list a, which consists of all states in Wk a=(s1,82,...,5L).

If a is invalid in Hm, we have a contradiction. If not, s;, must be recurrent in 0 by Theorem Use
6* to generate a censored list a’ that starts from sy. Then, s; must appear after sy, in a’. However,

this is impossible in 6,,, since s; is transient and sy, is recurrent: a contradiction.

Case 2 : Jt s.t. is transient in * but recurrent in ém.
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For brevity, assume that ¢ is the only transient state in 8*; this can be easily relaxed. Use 8* to
generate a censored list that starts with ¢, say a = (¢, s1,...,5r). By Theorem {s1..} is a closed
irreducible set in 8*. Define a’ = (s1.1,), which is also valid in 8*. Now, a may or may not be valid

in 6,,,. Assume that a is valid in 6,,, since otherwise we have a contradiction. Then, in 6,,,, {¢, s1.1,}

must be a closed irreducible set since ¢ is recurrent. Then, a’ = (s1.1) is invalid in 6,, since ¢ must
be visited as well: a contradiction.

Case 3. 3(i,7) s.t. 7(4) = 7(4) , but 7*(4) # 7*(j).
Start a random walk from the state ¢ w.r.t. 8* and generate a censored list a. By Theorem [2] the

censored list a does not contain j. In 6,,, however, a censored list starting from ¢ must also output
7 since ¢ and j are in the same closed irreducible set. Thus, a is invalid in 8,,,: a contradiction.

Cased. 3(i,j) s.t. 7*(i) = 7*(j) , but 7(3) # 7(5).

Start a random walk from the state ¢ w.r.t. * and generate a censored list a. By Theorem [2] the
censored list a’ must also contain j. In 6,,, however, a censored list starting from ¢ cannot output j
since j is in a different closed irreducible set. Thus, a’ is invalid in 6,,,: a contradiction.

O

Lemma 4. Assume Let {é\m]} be a convergent subsequence of {ém} and 0’ be its limit point:
0 =lim;_, é\mj. Then, lim;_, o, P(a; §mj) = P(a; 0') for all a that is valid in 6*.

Proof. There are exactly two case-by-case operators which causes the likelihood function to be dis-
continuous. The operators appear in (3)) and (I)), which respectively rely on the following conditions
w.rt. alista = (ay.p):

(I— Q™) exists, Vk € [M — 1] )
P(s | a1.0;0) =0,Vs € S\ {a1.:m}- (10)

Step 1: claim that VO € O,
supp(6) 2 supp(0*) and decomp(0) = decomp(6*) = Va valid in 8* (9) and

To show (), suppose it is false for some k& € [M — 1] and some censored list a = (a1.ps) valid in

0*. The nonexistence of (I — Q(*))~1 implies that there is no path from ay, to a state that is outside
of {ay.;} whereas there is such a path w.r.t. 8*. This contradicts supp(8) 2 supp(6*).

To show , consider a censored list a = (aj.pr) that is valid in 8*. By Theorem [2} the last
state a,; must be a recurrent state in a closed irreducible set W w.r.t. 8*. Since 0 has the same
decomposition as 8* and every state in W must be present in a, no other state can appear after a ;.
This implies (I0).

Define
O ={0cO| |00 <minb,decomp(8) = decomp(6’)}.

Step 2: claim that P(a; ) is a continuous function of € in the subspace @', Va valid in 6*.

Note that VO € @',

supp(9) 2 supp(6') O supp(6”)
decomp(f) = decomp(f’) = decomp(6*),

where the first subset relation is due to the co-norm in the definition of ®’, the second subset relation
and the last equality is due to Lemmaand 0’ =lim;_, Omj.

This implies, together with step 1, that VO € @', (9) and (I0) are satisfied, which effectively gets
rid of the case-by-case operators in ®’. This concludes the claim.

Step 3: lim;_, ., P(a; §m]) = P(a; @) for all a that is valid in 8*.
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Since §mj — @', there exists J such that
i>J = |0, —0']lx < miinag :

Thus, after .J, the sequence enters the subspace ®' in which P(a; 0) is continuous Va valid in 6*,
which concludes the claim.
O

Lemma 5. Assume|Al| Let {é\mj} be a convergent subsequence of {6,,,} and 0 be its limit point:
0" =lim; ;o 0. Then, Q*(8') > —cc.

Proof. Suppose not: Q*(0’) = —oo. Then, there exists a list a’ that is valid in 8* whose likelihood
w.r.t. 8’ converges to O:
Ja’s.t. P(a’;0*) > 0and P(a’; ') = 0,

By Lemma P(a’; 0’) = 0 implies that lim;_, ., P(a’; §mj) =0.
Let 0 < ¢ < P(a’;0*). Denote by #{a’} the number of occurrences of the list a’ in

{aM ... alm)}, Then, the following statements hold:

/!

dJyst.j>J = ‘#T{na} —P(a’;0%)| < ¢ (11)
J

Ao st j < Jo = ‘@mj (0°) — 0% (8% < e (12)

. ~ Q*(0*) — ¢
2
dJ3 st j > J3 = logP(a’;0,,,) < Pla; 07 —¢ (13)

The first two statements are due to the law of large numbers, and the last statement is due to the
convergence of P(a’; 6,,,) to 0. Note that @, (6") < Qp;(6.;) since 6,,; is the maximizer of
the function @mj (0). Then, if j > max{Jy, Jo, J3},
Q*(6*) — € < O, (0%)
<0,,(6,)
li

Z #ia) logP(a;6,,,) | + #ia’} logP(a’; 6,,,)

m; m;
aa’ J J
< (P(a';6") — ) log P(a’; 0,
< QY(07) — ¢,

where the last inequality is due to (I3)). This is a contrandiction. O

Lemma 6. Assume Let {é\mj} be a convergent subsequence of {ém} Let 0’ = lim;_, ém
Then, lim;j 00 Qm,; (Om;) = Q*(0’).

3

Proof. The idea is that we can have a compact ball around the limit point 8" and show that the log

likelihood @m]. (@) converges uniformly on the ball. Then, after the sequence ,,,; gets in the ball,
we can use the uniform convergence of the log likelihood.

Let Bg/(r) = {8 € © | || — 0'||]» < 7} be an oo-norm ball around 6’. Choose € <
miniesupp(g) 91 We claim that

V6 € By (€'), Q*(8) > —oo and O,,(8) > —o0, ¥m. (14)

Let O € Bg:(€'). By the definition of the ball By (¢’), supp(@) 2 supp(0’). Note that Q*(0") >
—o0 by Lemma[5} By Lemmall] supp(6’) 2 supp(6*):

supp(6) 2 supp(8’) 2 supp(8*).
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This then, again by Lemma implies the claim. Now, @mj (@) converges to Q*(0) uniformly on
the ball Bg (¢') since the function is continuous on the ball that is compact.

Let 0 < € < 2€¢’. Note

P (||§m], 0| > 6/2) ) (15)

P( sup | O (6) — Q*(G)’ > e/2> =0 (16)
0B (<)

P (\Q*(émj) — Q%0 > 6/2) - 0. (17)

(13) i is due to the convergence of {9 , }- (T6) holds because of the uniform convergence on the ball
Be (€'). (I7) holds because Q*(6) is continuous at 6.

Recall we want to show P(|Qmj (OAmj) — Q*(@")| > ¢) — 0. Note:
P(1Qum; (O1n;) — Q"(0")] > )
<P(|Qun, (Bm,) = Q (Bm,)| > ¢/2) + P(1Q"(O,) — Q*(6)] > ¢/2).
The second term goes to zero by (I7). It remains to show that the first term goes to 0:
P(|Qm, (Om,) = Q" (Om,)| > €/2)
<P (1Qm, (Bm,) = Q (Bm,)| > /2| 1B, = O'l1oc > ¢/2) P (110, — 8'llc > €/2) +
B({1Qm, Bm,) = Q"B )| > €/2f N {1180, = 0'llc < /2}).

The first term goes to zero by (T3). The second term also goes to zero as follows, which completes
the proof:

P({1Qm, (Bn,) = " @)l > €/2} N {1181, = 0'll < ¢/2})

(
P({ sup |Qmj<0>—g*<e>>e/2}ﬂ{||§mj—e'||oo<e/2}>
6cBy/ (e/2)

sup |Qm, ( )7Q*(0)| >€/2>

0B,/ (c/2)

<P

gIP( sup |@mj(a)g*(0)|>e/2>%o

0cBgy/ (€¢)

where the last line is due to (T6). O
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