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Abstract
Much research in Bayesian modeling has been
done to elicit a prior distribution that incorpo-
rates domain knowledge. We present a novel and
more direct approach by imposing First-Order
Logic (FOL) rules on the posterior distribution.
Our approach unifies FOL and Bayesian model-
ing under the regularized Bayesian framework.
In addition, our approach automatically estimates
the uncertainty of FOL rules when they are pro-
duced by humans, so that reliable rules are incor-
porated while unreliable ones are ignored. We
apply our approach to latent topic modeling tasks
and demonstrate that by combining FOL knowl-
edge and Bayesian modeling, we both improve
the task performance and discover more struc-
tured latent representations in unsupervised and
supervised learning.

1. Introduction
Incorporating domain knowledge into the learning process
is an effective way to improve the accuracy of predictive
tasks (Richardson & Domingos, 2006) or the interpretabil-
ity of latent representations (Andrzejewski et al., 2011).
Bayesian methods provide a rigorous mathematical frame-
work to incorporate domain knowledge via Bayes’ rule.
Much research has been done on eliciting an informative
prior, either directly (Garthwaite et al., 2005) or indirectly
by imposing parameter constraints and confidence val-
ues (Mao & Lebanon, 2009). Furthermore, Bayesian meth-
ods naturally handle noise in domain knowledge, which is
especially important when domain knowledge is collected
from the crowd, e.g. (Raykar et al., 2010).

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

However, since the ultimate goal of Bayesian methods is
to infer a posterior distribution, it is arguably more di-
rect to impose domain knowledge directly on the posterior
distribution. The regularized Bayesian framework (Reg-
Bayes) does this via posterior constraints (or equivalent
posterior regularization) using a variational representation
of Bayes’ rule (Zhu et al., 2013b). RegBayes has had sig-
nificant success in learning discriminative Bayesian mod-
els by conjoining max-margin learning and Bayesian non-
parametrics (Zhu et al., 2011; Zhu, 2012). Nonetheless,
the domain knowledge considered in RegBayes so far has
been max-margin posterior constraints, which could be too
narrow and inapplicable to unsupervised learning. Further-
more, no existing RegBayes model has explicitly modeled
the noise in domain knowledge.

In this paper we introduce Robust RegBayes, a princi-
pled framework to robustly incorporate rich and uncertain
domain knowledge in both unsupervised and supervised
learning tasks. Our contributions are two-fold: First, we
greatly extend the scope of RegBayes domain knowledge
by allowing First-Order Logic (FOL) rules. To achieve this,
we use groundings of the FOL formulas and define features
as expected number of groundings in which the formula is
true. In producing FOL domain knowledge, domain ex-
perts are often able to focus on high-level modeling goals
of the application domain. Second, we explicitly model the
uncertainty in domain knowledge using a spike-and-slab
prior. This allows us to automatically and selectively incor-
porate high-quality domain knowledge while ignoring low-
quality ones. Our experiments on Robust RegBayes, es-
pecially on various latent Dirichlet allocation (LDA) (Blei
et al., 2003) tasks, convincingly demonstrate improved task
performance and topic interpretability in both unsupervised
and supervised settings. Compared to First-Order Logic
LDA (Fold·all, a state-of-the-art framework to incorporate
FOL rules into LDA) (Andrzejewski et al., 2011) which re-
quires experts to manually set the weights of FOL rules,
Robust RegBayes automatically learns the weights. Com-
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pared to max-margin supervised LDA that incorporates
word features (Zhu & Xing, 2010), it discovers more in-
terpretable topics without sacrificing prediction accuracy.

2. The Robust RegBayes Framework
2.1. RegBayes with FOL Domain Knowledge

We first review the RegBayes framework (Zhu et al.,
2013b). Consider a generic Bayesian latent variable model
with observed random variables X ∈ X and hidden vari-
ables H ∈ H. Standard Bayesian inference calculates the
posterior distribution p(H | X) from a prior p0(H) and
a likelihood model. It is often difficult to make sure that
the posterior satisfies all domain knowledge constraints. In
contrast, the RegBayes framework allows domain knowl-
edge to directly influence the posterior. RegBayes does so
by penalizing distributions that differ in the expected value
of feature functions. Each feature function, denoted as φl,
and the “belief label” of the feature, denoted as γl, are in-
duced from domain knowledge. Formally, the RegBayes
inference procedure is defined as a constrained optimiza-
tion problem:

min
q(H)∈P,ξ∈RL

+

KL (q(H) ‖ p(H | X)) + C
∑
l

ξl (1)

s.t.
∣∣Eq(H) [φl(H,X)]− γl

∣∣ ≤ ε+ ξl,

where P denotes the appropriate probability simplex;
p(H | X) is the posterior distribution via Bayes’ rule;
ξ ∈ RL+ is the vector of L slack variables, one for each
domain knowledge constraint; ε is a small positive preci-
sion parameter; and C is a regularization parameter. The
key difference between RegBayes and standard Bayesian
model is that the “optimal distribution” q(H) obtained by
solving Eq (1) can be different from p(H | X). The stan-
dard Bayesian posterior is a special case of RegBayes, as
can be seen by setting C = 0.

Despite its success, the application of RegBayes so far has
been limited to max-margin constraints (Zhu et al., 2011).
Max-margin constraints cannot represent many kinds of
rich domain knowledge such as those for unsupervised
models. To substantially broaden the scope of knowledge
used in RegBayes, we consider FOL rules in this paper.
FOL is a particularly flexible and powerful knowledge rep-
resentation. It has the additional benefit of insulating the
domain experts from the intricacy of Bayesian inference.

Formally, let Rl be the lth FOL rule represented in Con-
junctive Normal Form with logical predicates over instan-
tiations (h,x) of the variables (H,X). To tie the rule
to RegBayes, we define a feature function φl to provide
finer resolution over the domain knowledge. Specifically,
let Gl be the set of groundings of Rl, we define the fea-
ture function φl = 1

|Gl|
∑
gl∈Gl

1(gl(h,x)). Note that this
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Figure 1. (a) An example of the spike-slab likelihood p(γ̃lm |
γl, bl), where the slab component is a uniform distribution on
[0, 1] (blue line) and the spike component is a truncated Gaus-
sian with a small variance (red line). (b) The Robust RegBayes
model.

feature function takes value in [0, 1] (rather than {0, 1})
and captures the fraction of groundings where the rule is
true. We let the “golden standard” expectation of rule Rl
be γl = E [φl(H,X)] under the desired distribution. So-
liciting γl from domain experts is difficult and will be ad-
dressed in the next section.

Compared to Markov Logic Network (MLN) which has the
goal of modeling FOL rules in probabilistic terms, Reg-
Bayes FOL rules are meant to influence a separate Bayesian
model. Therefore, RegBayes truly combines FOL and
Bayesian modeling. Compared to some other prior work
on incorporating FOL into probabilistic models such as
Fold.all (Andrzejewski et al., 2011), one major advan-
tage of RegBayes is to automatically learn the FOL rule
weights. These weights would be hard (if not impossible)
for humans to manually set, especially in a crowd setting.
RegBayes learns the rule weights from relatively easier-to-
obtain belief labels via solving a dual optimization prob-
lem, as we show next.

2.2. Robust RegBayes
The golden standard γl for each rule is rarely observed
precisely in reality. We solve the problem by treating
expert-supplied values of γl as noisy observations. For-
mally, let the FOL knowledge base collected from experts
be KB = {Rl, γ̃l}Ll=1. The KB consists of L FOL rules.
Each rule Rl is associated with a set of noisy observations
γ̃l = {γ̃lm : γ̃lm ∈ [0, 1]}Mm=1 from M different human
experts, e.g., workers in a crowdsourcing setting. We inter-
pret γ̃ as a degree of belief that the rule holds true over the
variables. Our KB is “soft,” similar to that in Fold·all (An-
drzejewski et al., 2011).

Given the noisy knowledge base KB, we are interested
in modeling the reliability of the rules. Previous stud-
ies on learning from crowds (Raykar et al., 2010; Welin-
der et al., 2010) made various assumptions on the experts
and tasks. In this paper, for robustness we restrict our-
selves to two levels of rule reliability: If γ̃lm is labeled
coherently by multiple experts and the belief is corrobo-
rated by the Bayesian latent variable model, we hypothe-
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size that it is reliable and should be incorporated into our
Bayesian models; otherwise, we deem the rule unreliable
and ignore it. This knowledge selection process can be for-
mally characterized by introducing a binary selecting vari-
able bl ∈ {0, 1} for each rule. We define a “noisy belief
likelihood” p(γ̃lm | γl, bl) as a spike-slab mixture of two
components, selected by bl: If bl = 0, we use a slab distri-
bution to generate diverse beliefs; If bl = 1, we use a spike
distribution to generate coherent labels. See Figure 1(a).

Our Robust RegBayes framework is defined as:

min
q,ξ

KL (q(H,γ,b) ‖ p(H,γ,b | X, γ̃)) + C
∑
l

ξl

s.t. Eq(bl)
[
bl
∣∣Eq(H|bl) [φl(H,X)]− Eq(γl|bl) [γl]

∣∣]
≤ ε+ ξl, ξl ≥ 0, ∀l = 1 . . . L (2)

where p(H,γ,b | X, γ̃) ∝ p0(H)p0(b,γ)p(X | H)p(γ̃ |
γ,b) is the posterior distribution via Bayes’ rule. Fig-
ure 1(b) shows the graphical model for Robust RegBayes.
The prior distribution p0(b,γ) for bl and γl will be dis-
cussed in the section of application to LDA. We make two
observations. First, if we collapse the model by reducing
the uncertainty on (γ,b) and holding them constant (i.e.,
bl = 1 and γ̃l = γl), Eq (2) reduces to RegBayes Eq (1).
In general, Robust RegBayes (2) takes the uncertainty of
domain knowledge into consideration and the binary se-
lecting variable bl specifies the importance of each logic
constraint. For unreliable domain knowledge, the corre-
sponding bl will have a small probability of being 1 and
thus the expectation Eq(bl) [bl] (i.e., the importance of the
logic) will be small. Second, the reliability of rules (b,γ)
and the underline Bayesian model (H,X) influence each
other in the Robust RegBayes framework. This is repre-
sented with the dashed arrow in Figure 1(b). We will see
the influence more clearly later in the applications on LDA.

2.3. A Generic Inference Procedure

Since the KL divergence is convex with respect to q (Wain-
wright & Jordan, 2008) and the posterior constraints are
intrinsically linear, problem (2) is convex. Thus, we can
apply convex analysis tools to derive a generic solution.
Specifically, by introducing a set of dual variables µ we
obtain the optimal distribution:

q(H,γ,b | µ∗) = p(H,γ,b | X, γ̃)
Z(µ∗)

e
∑

l µ
∗
l bl(φl(H,X)−γl)

where µ∗ is the optimum solution of the dual problem:

max
µ

L(µ) = − logZ(µ)− ε
∑
l

µl (3)

s.t. −C ≤ µl ≤ C,

and Z(µ) is the normalization factor for q. Note that µl is
the weight of logic rule l and the binary variable bl deter-
mines whether the rule affects the posterior distribution of

H or not. By solving the dual problem (3), we automati-
cally learn the optimal weights µ∗. Then, by inferring bl
we selectively incorporate reliable FOL rules while ignor-
ing unreliable ones.

Despite its elegance, it is important to realize that the
generic inference procedure is in general intractable in la-
tent variable models. One needs to utilize variational ap-
proximation or sampling techniques to find approximate
solutions. In the next section, we present a specific instan-
tiation of Robust RegBayes to LDA models and detail one
way to perform efficient variational inference.

3. Application to LDA Models
3.1. Robust RegBayes Applied to LDA
We now give an instantiation of Robust RegBayes in learn-
ing LDA topics by incorporating FOL domain knowledge.
LDA posits that each document is drawn from an admix-
ture ofK topics. Each topicϕk is defined as a multinomial
distribution over a given vocabulary and follows a Dirich-
let prior p(ϕk | β) = Dir(ϕk | β). For document d,
we draw a topic proportion θd from a Dirichlet distribution
p(θd | α) = Dir(θd | α). For the ith word in document
d, we draw a topic assignment zdi from the multinomial
parametrized by θd, p(zdi = k | θd) = θdk, and then
draw the word wdi from the selected topic ϕzdi , that is
p(wdi | zdi,ϕ) = ϕzdi,wdi

. The joint distribution of LDA
is p(W,Z,ϕ,θ | α,β) =

(∏
k p(ϕk | β)

)(∏
d p(θd |

α)
∏
i p(zdi | θd)p(wdi | zdi,ϕ)

)
where W = {wdi} are

the observed words, Z = {zdi},θ = {θdk},ϕ = {ϕdk}
are the hidden variables. In Bayesian methods, we aim
to infer the posterior over hidden variables p(Z,ϕ,θ |
W,α,β).

For domain knowledge, we assume that all the FOL rules
are defined over the instantiation of words W and hidden
topic assignments Z. To account for uncertainty in knowl-
edge, we model the belief labels γ̃lm by a spike-slab like-
lihood (cf. Figure 1(a)), where we define the slab compo-
nent as uniform[0, 1] and the spike component as a trun-
cated Gaussian distribution in [0, 1] with the golden stan-
dard γl as the mean and variance σ2

l . The variance σ2
l is

determined by empirical Bayes. The likelihood is then de-
fined as p(γ̃l | γl, bl) =

∏
mN (γ̃lm; γl, σ

2
l )
bl . We set

non-informative uniform priors for both bl and γl.

With the above definitions, we have H = {Z,θ,ϕ} and
X = W. Plugging these variables to problem (2), we get
the optimization problem of learning robust logic LDA:

min
q,ξ

KL (q(H,γ,b) ‖ p(H,γ,b |W, γ̃,α,β)) + C
∑
l

ξl

s.t. Eq(bl)
[
bl
∣∣Eq(Z|bl) [φl(Z,W)]− Eq(γl|bl) [γl]

∣∣]
≤ ε+ ξl, ξl ≥ 0, ∀l = 1 . . . L.
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3.2. Variational Approximation

To collapse the parameter space and improve inference ac-
curacy, we first marginalize out the variables ϕ and θ by
exploring the conjugacy between multinomial and Dirich-
let in a way similar to (Teh et al., 2007). This marginal-
ization does not affect our logic constraints since they are
not directly defined on ϕ or θ. In theory, we can apply
convex analysis tools to derive a closed-form expression of
the posterior distribution q as in Section 2.3 and solve the
dual problem of the generic form (3) for the dual param-
eters. Unfortunately, in practice it is intractable from the
posterior of logic LDA. Thus we resort to variational ap-
proximate methods, as detailed below.

Approximate Inference: Given the dual variables µ, we
need to compute the collapsed posterior q(Z,γ,b | µ).
This can be done with variational methods. Specifically,
we make the mean field assumption that q̃(Z,γ,b | µ) =∏
d

∏
i q̃(zdi | ψdi)

∏
l q̃(γl | ρl)q̃(bl | λl), where q̃(zdi |

ψdi) is a discrete distribution with parameters ψdi; q̃(γl |
ρl) is a point-mass function centered on ρl; and q̃(bl | λl)
is a Bernoulli distribution. Then, the best approximation
can be found by minimizing the KL-divergence between
q̃(Z,b,γ | µ) and the posterior distribution q(Z,γ,b | µ)
with respect to variational parameters. It can be shown that
we have the following mean field update equations. For the
topic assignment variational parameter ψ, we have:

ψkdi ∝ exp
(
Eq̃(Z−di)q̃(b)

[
log(αk + n−didk· )

+log(βwdi
+ n−di·kwdi

)− log(
∑
v

βv + n−di·k· )

+
∑
l

µlblφl(Z,W)
])
,

where ndkv ,
∑
i 1(zdi = k,wdi = v) is the num-

ber of times that word v is assigned to topic k in docu-
ment d; the dot denotes summation over that index (e.g.,
ndk· =

∑
v ndkv); and −di denotes that word wdi is ex-

cluded in calculating the counts. Note that the last term in-
corporates the FOL logic constraints. Exact computation of
the expectations is still very expensive, however. We thus
make further approximations. The first three terms in the
exponential are the same as in the collapsed variational in-
ference (CVI) algorithm for LDA and we can approximate
it effectively by zero-order information (Asuncion et al.,
2009). For the last term, we approximate it by using the
mode Ẑ of the current distribution q̃(Z). We get:

ψkdi ∝
αk +N−di·dk∑
v βv +N−di·k·

(βwdi
+N−di·kwdi

)e
∑

l µlλlφl(Ẑ,W),

(4)
where N−didkv ,

∑
j 6=i 1(wdj = v)ψkdj . For the variational

parameters ρ and λ, letting S(x) , 1/(1+e−x) denote the
sigmoid function, we have the mean-field update equations
(The dual variables µ are given):

λl = S
(
M log(

√
2πσl) +

∑
m((γ̃lm)2 + σ2

l )

2σ2
l

+µl(Eq̃(Z) [φl(Z,W)]− ρl)
)
,

ρl =
−µlλlσ2

l + λl(
∑
m γ̃lm)

Mλl
.

Due to space limit, we briefly explain the intuition behind
λl update. It is influenced by both the coherence of be-
lief labels (the first and second terms) and the difference
between the current expected feature value and the golden
standard for the rule (the third term). Therefore, Robust
RegBayes infers the reliability of each rule by considering
both noisy labels and the underline Bayesian latent variable
model.

Weight Learning: To learn the dual parameters µ (i.e.,
the weights of FOL rules), we perform stochastic gradient
descent (SGD) to the dual problem (3). Since the exact
calculation of the gradient is intractable, we approximate it
as follows:

∂µl
logZ(µ) =

∑
Z,γ,b

q(Z,γ,b | µ)bl(φl(Z,W)− γl)

≈
∑
Z,γ,b

q̃(Z,γ,b | µ)bl(φl(Z,W)− γl)

≈Eq̃(bl) [bl] (φ̂l(Ẑ,W)− Eq̃(γl) [γl]), (5)

where the first equality holds due to duality; the first ap-
proximation is due to variational approximation; the sec-
ond approximation is due to approximating the expectation
of the logic rule. Here, we use the mode Ẑ of the varia-
tional distribution q̃(Z,γ,b | µ) which is efficient since
Z is independent under the mean field assumption. An-
other approximation is made to calculate φl(Z,W) when
the number of groundings is too large — we approximate
it by uniformly sampling the groundings for such rules, de-
noted as φ̂l(Z,W). These approximations work well in
practice, as we show below.

With the approximate gradients, we update the weights by
the SGD rule:

µt+1
l = Proj[−C,C](µ

t
l + τt(−∂µl

logZ(µ) + ε)), (6)

where Proj[s,t](x) denotes the Euclidean projection of x
to the interval [s, t]; and τt is the step length which satisfies
mild conditions to ensure convergence (Bottou & Bous-
quet, 2011). In our implementation we set τt = (t+ τ0)

−κ

and tune parameters τ0 and κ.

4. Experiments
We now present empirical results on learning both unsuper-
vised and supervised topic models to demonstrate the effi-
cacy of Robust RegBayes on incorporating noisy FOL do-
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Table 1. Datasets. Intuitively, seed rule anchors a specific word to a specific topic, which will attract similar words to the topic; cannot-
link rule forces two specific words into different topics; doc seed rule is similar to seed rule, but only applies to specific documents.
See (Andrzejewski et al., 2011) for the formal definitions of seed, cannot-link, docseed, inclusion, and exclusion rules.

Dataset #Documents #Topics Description #FOL Rules
COMP 5,000 20 comp.* in 20 newsgroup data 8 seeds
COM 2,740 25 U.S. House of Representatives 3 seeds, 2 docseeds
POL 2,000 20 movie reviews 1 cannot-link
HDG 24,073 50 PubMed abstracts 8 seeds, 6 inclusion, 6 exclusion

main knowledge. In short, Robust RegBayes shows supe-
rior ability to discover latent semantic structures and make
accurate predictions in the supervised settings.

4.1. Experiments with Unsupervised Topic Models

We denote our Robust RegBayes applied to LDA as
“RLogicLDA.” A special case of RLogicLDA is to set
bl = 1 for all rules in Eq. (2), i.e., do not allow the model to
ignore any rules via the slab component. Equivalently, the
special case treats all rules as valid. We denote the special
case as “LogicLDA.” For baselines, we use (i) the vanilla
LDA using Gibbs sampling, and (ii) Fold·all, a MAP esti-
mator to incorporate FOL into LDA. Fold·all requires ex-
perts to manually set the weights of rules. We adopt the
well-performing “Mir” method for Fold·all and download
the authors’ implementation (Andrzejewski et al., 2011).

4.1.1. LOGICLDA VS. LDA AND FOLD·ALL

We first show that LogicLDA achieves similar performance
as Fold·all (which has the benefit of expert-set rule weights)
by automatically learning rule weights. We use all four real
datasets in (Andrzejewski et al., 2011) and the same logic
rules. The logic rules contain “seed rules” which assign
specific words to specific topics, “cannot-link rules” which
force two words into separate topics, and so on. Details
are in Table 1. Since no belief labels γ̃l were provided with
their data, we define them by examining the meaning of the
logic rules: All the rules in COMP, CON and POL aim to
make the learned topics more understandable for humans,
we set all the belief labels of these rules at γ̃l = 1. For
HDG, the rules are given by biological experts and should
be satisfied according to the description. Thus, we also set
their belief labels at 1. As in (Andrzejewski et al., 2011),
we randomly split documents into training/testing sets by a
ratio of 8/2. For LogicLDA, we utilize the FOL rules dur-
ing training and estimate the topics ϕ from the posterior
distribution q̃(Z) as in (Asuncion et al., 2009). As in (An-
drzejewski et al., 2011), the knowledge is assumed to be
encoded into the estimated topics. Therefore, for testing,
we do not utilize the logic rules and only optimize the vari-
ational bound given ϕ as in vanilla LDA (Blei et al., 2003).

We measure test set perplexity to evaluate LDA perfor-

mance (Blei et al., 2003). To show different methods’
ability in incorporating logic rules, we also measure the
proportion of satisfied logic rules. For fairness, all pa-
rameters are the same as in (Andrzejewski et al., 2011)
across all the methods in comparison, e.g. we use the same
symmetric Dirichlet parameters α = 1, β = 1 below.
For the extra parameters in our methods, we simply set
ε = 0.001 and the regularization parameter C at a large
number (e.g., 1000000) so that the dual parameters µ never
reach the bounds in Eq (3). The SGD step length decays as
τt = (t+ 10)−0.5 by cross validation on the training data.

We run each method five times under random initialization
and report the average results in Table 2. LogicLDA is su-
perior to LDA and Fold·all by both measures: First, Log-
icLDA achieves the lowest test set perplexity in three out
of four data sets. These differences are statistically sig-
nificant under 2-tailed paired t-test with significance level
p < 0.02. In addition, on the CON data set LogicLDA is
not significantly different than the best (LDA).

Second, LogicLDA and Fold·all both achieve much higher
proportion of FOL rule satisfaction than LDA (except for
the POL data set, where all models achieve near 100% sat-
isfaction). Importantly, LogicLDA does so by automati-
cally learning the rule weights, while Fold·all has to rely
on human experts to specify the weights.

4.1.2. RLOGICLDA VS. LOGICLDA: ROBUSTNESS

We examine the robustness of RLogicLDA by comparing
it with LogicLDA under the same settings as above, but
with potentially unreliable domain knowledge. To this end,
we intentionally design one potentially unreliable FOL rule
for each of the four datasets, see Table 3. We show each
designed rule to M = 20 volunteers and collected their
subjective belief label γ̃lm on that rule. Specifically, each
volunteer can select their γ̃lm between 0 and 1 with step
size 0.1 via a user interface. Table 3 shows the histogram
of γ̃lm: a flat histogram indicates disagreements among the
volunteers and thus unreliable rule.

RLogicLDA performs better than LogicLDA in test set per-
plexity, as shown in Table 3. On COMP and HDG data
sets, the difference is statistically significant under 2-tailed
paired t-test (p < 0.02) while on CON and POL the dif-
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Table 2. Test set perplexity and proportion of satisfied logic rules on four datasets.
Test Set Perplexity Proportion of Satisfied Logic Rules

LDA Fold·all LogicLDA LDA Fold·all LogicLDA
COMP 1531± 12 1537± 11 1463± 5 0.00± 0.00 1.00± 0.00 0.97± 0.01
CON 1206± 6 1535± 10 1216± 11 0.07± 0.04 0.67± 0.03 0.70± 0.00
POL 3218± 13 3220± 13 3176± 12 1.00± 0.00 1.00± 0.00 1.00± 0.00
HDG 940± 6 973± 7 885± 2 0.60± 0.01 0.95± 0.00 0.96± 0.01

Table 3. RLogicLDA is robust to unreliable domain knowledge

Data Designed Rule Histogram Test Set Perplexity Satisfaction Proportion
LogicLDA RLogicLDA LogicLDA RLogicLDA

COMP
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windows, window,
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Belief

1467± 6 1446± 6 0.39± 0.16 0.07± 0.06

CON
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gene}: different topics
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Belief

895± 2 891± 2 0.75± 0.03 0.95± 0.01

ference is not significant. It achieves this by only listen-
ing to reliable rules. The empirical means of the belief la-
bels for the four rules are 0.50, 0.40, 0.52 and 0.72 respec-
tively. The satisfaction proportions of LogicLDA are close
to these empirical means – it indiscriminately obeys all do-
main knowledge. In contrast, RLogicLDA is able to ignore
the first three rules it deems unreliable, while obeying the
fourth rule. This is reflected in RLogicLDA’s proportions.

4.2. Experiments with Supervised Topic Models

We now show that robustly incorporating knowledge can
help achieve both higher prediction performance and better
interpretability of learned topics compared to other super-
vised LDA methods.

4.2.1. SETTINGS AND DOMAIN KNOWLEDGE

We use the HotelReview dataset (Zhu & Xing, 2010) and
predict the global rating (an integer from 1 to 5) of each ho-
tel review based on its content. As in (Zhu & Xing, 2010),
we treat it as a regression problem and normalize the rat-
ings. The dataset contains 5,000 reviews and is equally
split into training and testing sets. Besides the global rat-
ing, each review also has the ratings of five aspects: value,
location, service, room, and cleanliness. Discovering the

latent correspondence between review contents and aspects
is an interesting research topic (Wang et al., 2010). Here,
we use seed rules to assign several representative words of
each aspect to a specific set of topics. Specifically, we as-
sign words {value, price, quality, worth, resort} to topics
1 and 2 to seed the value aspect; {location, traffic, restau-
rant, beach} to topic 3 to seed the location aspect; {service,
food, breakfast, dinner} to topics 4–6 to seed the service as-
pect; and {door, floor, bed, stay, bathroom, room} to topics
7–10 to seed the room aspect. We ignore the cleanliness
aspect because we find reviews on cleanliness usually are
contained within the reviews on the room aspect and thus
redundant. Furthermore, to distinguish positive and nega-
tive aspects, we use a “sentiment seed rule” to assign 19
seed positive words to topics 1,3,5,7,9.1

Note that these rules represent our intention to relate topics
and aspects. Therefore, we set all belief labels for the five
rules to 1.0. Finally, as in Section 4.1.2, we also collect
empirical belief labels from M = 20 volunteers for one
reliable rule (the “Not rule”) and one unreliable rule (the
“But rule”), see Table 4.

1The 19 seed words are amazing, beach, beautiful, comfort-
able, enjoyed, excellent, fantastic, fresh, friendly, good, great,
large, lovely, nice, perfect, wonderful, best, recommend and en-
joy.
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Table 4. Intentionally Designed Reliable and Unreliable Rules

Rule Description Histogram mean(γ̃lm) p(bl = 1 | λl)
Satisfaction Proportion

sLogicLDA sRLogicLDA

Not rule

seed: {adjectives with
negation within

distance 4 before it} →
the last topic
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0.91 0.99 0.98± 0.03 1.00± 0.00

But rule

seed: {all words before
adversative transition

(e.g. “but”) in
sentences} → the last

topic
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0.56 0.00 0.70± 0.13 0.05± 0.4

4.2.2. PREDICTION PERFORMANCE

We build our supervised RLogicLDA (“sRLogicLDA”)
by adding the same max-margin posterior constraints as
in (Zhu et al., 2013a) to RLogicLDA. The parameter set-
tings of ε, C and α are the same as in the unsupervised ex-
periments. The other parameters (α, β) and the regulariza-
tion parameter introduced by max-margin constraints (Zhu
et al., 2013a) are set by cross-validation on the training
set. For baselines, we compare with (i) maximum entropy
discrimination LDA regression (MedLDAr) (Zhu et al.,
2013a), a RegBayes model that incorporates max-margin
posterior regularization into LDA; (ii) supervised condi-
tional topical random fields (sCTRF) (Zhu & Xing, 2010),
a feature based model that incorporates both single and
pairwise word features into MedLDAr.

We run each algorithm five times with random initialization
and random split, and report the average test set results in
Figure 2(a). Note with our setting sRLogicLDA requires at
least 10 topics to accommodate for the FOL rules, thus its
curve starts at #topics=10; while the baselines have no logic
rules and they start at #topic=3. We use predictive R2 (Zhu
& Xing, 2010) as the performance measure of regression.
sRLogicLDA achieves comparable performance as feature
based sCTRF, and outperforms MedLDAr. Note that sC-
TRF uses 15 features on words,2 while sRLogicLDA only
needs 7 simple logic rules. Therefore, incorporating do-
main knowledge as constraints is useful for prediction com-
pared with feature engineering approaches.

4.2.3. TOPIC INTERPRETABILITY

Tables 5,6 show the top 10 words of each topic learned by
sRLogicLDA and sCTRF with K = 15 topics.3 We manu-

2The sCTRF features are: 9 Part-of-Speech features that cate-
gorize the words, 5 WordNet sentiment features, and 1 feature on
whether two words belong to the same phrase.

3We observed similar phenomenon with other K. We did not
include the topics learned by MedLDAr for two reasons: first, as
Figure 2(a) shows MedLDAr has inferior predictive performance
compared to sCTRF and sRLogicLDA. Second, it was shown in
(Zhu & Xing, 2010) that MedLDAr produces less interpretable

ally judged which words represent the value, location, ser-
vice and room aspects, respectively, and colored them or-
ange, blue, cyan and red, respectively. When applicable,
we mark FOL seed words with an ∗.

sRLogicLDA has a clear correspondence between topics
and aspects due to the FOL rules. Topics T1–T10 obey the
grouping into the four aspects (denoted by vertical lines in
Table 5). The only exception is T7, which we suspect is
because the other three topics T8–T10 are sufficient in de-
scribing the room aspect. We also note that sRLogicLDA is
successful in attracting non FOL seeded, but aspect-related,
words into the topics (i.e., those colored words not marked
by an ∗ in Table 5). In contrast, such a clear correspondence
is largely absent in sCTRF (Table 6). Its topics contain a
mix of room, location, service aspects, and the value aspect
is missing among the top topic words.

Finally, we study sRLogicLDA’s ability to utilize the senti-
ment seed rule to attract additional positive words into spe-
cific topics. The set of positive topics, denoted as Tp =
{T1, T3, T5, T7, T9}, is defined as the topics specified by
the sentiment seed rule. The set of other topics is denoted
as To. We hope to see that Tp attracts many more positive
sentiment words (excluding the 19 seed words which the
rule forces into Tp anyway), and that To attracts fewer pos-
itive sentiment words (including the 19 seed words since
any positive words in To is undesirable). To this end, we
first obtain a commonly-used positive word listW contain-
ing 2006 positive words.4 Note W includes the 19 seed
words. We measure the amount of positive words in To
by the average weights of words in W over these topics:
Ao =

∑
k∈To

∑
w∈W ϕkw

|To| . Let W\19 be the set W exclud-
ing the 19 seed words. We measure the amount of positive

words in Tp by Ap =

∑
k∈Tp

∑
w∈W\19

ϕkw

|Tp| . Our hypothe-
sis is that, with the sentiment seed rule, Ap ≥ Ao. Note
that because of the exclusion of seed words from the com-
putation of Ap, this hypothesis is a very strict comparison.

topics than sCTRF on the same data.
4http://www.cs.uic.edu/∼liub/FBS/opinion-lexicon-

English.rar.
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Figure 2. (a) Predictive R2 of sRLogicLDA, sCTRF, and MedLDAr. (b) average weights of positive words in the positive topic set (Ap)
and the other topic set (Ao); and (c) predictive R2 of sRLogicLDA and sLogicLDA.

Table 5. Top 10 words in Sampled Topics learned by sRLogicLDA
T1+ T2 T3+ T4 T5+ T6 T7+ T8 T9+ T10 T11 T12 T13 T14 T15

resort n’t *beach restaurant pool *breakfast but *room *room hotel staff pool but but n’t
free pay *location fruit good *food n’t told *bed *room but view reception hotel night

*price but nice *dinner holiday *service kids asked *bathroom rooms good area small staff looked
great money street wine bar but people desk shower *stay guests balcony area people smell

*worth check parking served entertainment day time front *door hotels time small however day work
island time area morning day water nice manager *floor night however chairs road time air

trip back good menu *food bar night *stay colorred*stay booked bit spa car place left
beautiful car *restaurant evening euros buffet great called bedroom *floor reviews lounge park n’t dirty
*quality expensive internet meal lovely drinks day call coffee city bar pools tv back carpet

place lobby great eggs evening lunch family back towels view found ocean side night back

Table 6. Topics learned by sCTRF in a randomly selected run

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
n’t room room room room room hotel hotel hotel hotel hotel pool beach beach great

poor n’t n’t n’t n’t hotel room room room pool pool hotel pool resort lovely
dirty told told hotel hotel n’t n’t n’t day day day food food great good
bad asked hotel stay stay stay night breakfast staff area food good good pool beautiful

room hotel back front night night stay staff area staff good beach resort good excellent
hotel back front desk rooms rooms rooms day breakfast rooms bar bar bar food beach
worst manager desk back back time breakfast night pool food area day great island wonderful
back stay stay night bed staff staff rooms time time staff nice day day nice
small called asked rooms front bed time time n’t breakfast beach restaurant hotel nice fantastic
awful night manager door time breakfast day area night good restaurant staff nice ocean amazing

Fig 2(b) presents the average Ap and Ao from five random-
ized run. Ap is indeed statistically significantly larger than
Ao (2-tailed unpaired t-test with p < 0.02). Therefore, the
sentiment seed rule attracts more positive words to Tp.

Taken together, these results demonstrate that by incor-
porating FOL rules on aspect-topic relation, sRLogicLDA
learns topics with improved interpretability.

4.2.4. ROBUSTNESS

We examine sRLogicLDA’s ability to automatically infer
robustness of FOL rules by comparing it with one variant:
sLogicLDA—a special case of sRLogicLDA where all bl
are set to 1 (i.e., forced to use all FOL rules with no attempt
to infer their robustness).

First, Table 4 shows that sLogicLDA simply matches satis-
faction proportions to the empirical mean of belief labels,
while sRLogicLDA is more sophisticated and achieves a
quite different proportion on the unreliable “But rule.” This
demonstrates that sRLogicLDA can select the reliable “Not
rule” and ignore the unreliable “But rule.” Second, Fig-

ure 2(c) shows that sRLogicLDA outperforms sLogicLDA
in predictiveR2 ,suggesting that automatically inferring the
robustness of knowledge achieves better performance.

5. Conclusions
We proposed Robust RegBayes, a framework to selectively
incorporate noisy FOL domain knowledge into Bayesian
models via posterior regularization. We applied our frame-
work to unsupervised and supervised topic models, and
demonstrated that through incorporating domain knowl-
edge robustly, we can improve both the predictive perfor-
mance and topic interpretability. In the future, we plan
to extend Robust RegBayes to incorporate FOL domain
knowledge into Bayesian nonparametric models.
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