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Abstract

In discrete undirected graphical models, the conditional independence of node
labelsY is specified by the graph structure. We study the case where there is
another input random vectorX (e.g. observed features) such that the distribution
P (Y | X) is determined by functions ofX that characterize the (higher-order)
interactions among theY ’s. The main contribution of this paper is to learn the
graph structure and the functions conditioned onX at the same time. We prove
that discrete undirected graphical models with featureX are equivalent to mul-
tivariate discrete models. The reparameterization of the potential functions in
graphical models by conditional log odds ratios of the latter offers advantages
in representation of the conditional independence structure. The functional spaces
can be flexibly determined by kernels. Additionally, we impose a Structure Lasso
(SLasso) penalty on groups of functions to learn the graph structure. These groups
with overlaps are designed to enforce hierarchical function selection. In this way,
we are able to shrink higher order interactions to obtain a sparse graph structure.

1 Introduction

In undirected graphical models (UGMs), a graph is defined asG = (V,E), whereV = {1, · · · ,K}
is the set of nodes andE ⊂ V ×V is the set of edges between the nodes. The graph structure spec-
ifies the conditional independence among nodes. Much prior work has focused on graphical model
structure learning without conditioning onX. For instance, Meinshausen and Bühlmann [1] and
Penget al. [2] studied sparse covariance estimation of Gaussian Markov Random Fields. The co-
variance matrix fully determines the dependence structurein the Gaussian distribution. But it is not
the case for non-elliptical distributions, such as the discrete UGMs. Ravikumaret al.[3] and Höfling
and Tibshirani [4] studied variable selection of Ising models based onl1 penalty. Ising models are
special cases of discrete UGMs with (usually) only pairwiseinteractions, and without features. We
focused on discrete UGMs with both higher order interactions and features. It is important to note
that the graph structure may change conditioned on different X ’s, thus our approach may lead to
better estimates and interpretation.

In addressing the problem of structure learning with features, Liuet al. [5] assumed Gaussian dis-
tributedY givenX, and they partitioned the space ofX into bins. Schmidtet al. [6] proposed a
framework to jointly learn pairwise CRFs and parameters with block-l1 regularization. Bradley and
Guestrin [7] learned tree CRF that recovers a max spanning tree of a complete graph based on heuris-
tic pairwise link scores. These methods utilize only pairwise information to scale to large graphs.
The closest work is Schmidt and Murphy [8], which examined the higher-order graphical structure
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learning problem without considering features. They used an active set method to learn higher order
interactions in a greedy manner. Their model is over-parameterized, and the hierarchical assumption
is sufficient but not necessary for conditional independence in the graph.

To the best of our knowledge, no previous work addressed the issue of graph structure learning of
all orders while conditioning on input features. Our contributions include a reparemeterization of
UGMs with bivariate outcomes into multivariate Bernoulli (MVB) models. The set of conditional
log odds ratios in MVB models are complete to represent the effects of features on responses and
their interactions at all levels. The sparsity in the set of functions are sufficient and necessary for the
conditional independence in the graph, i.e., two nodes are conditionally independent iff the pairwise
interaction is constant zero; and the higher order interaction among a subset of nodes means none of
the variables is separable from the others in the joint distribution.

To obtain a sparse graph structure, we impose Structure Lasso (SLasso) penalty on groups of func-
tions with overlaps. SLasso can be viewed as group lasso withoverlaps. Group lasso [9] leads to
selection of variables in groups. Jacobet al. [10] considered the penalty on groups with arbitrary
overlaps. Zhaoet al. [11] set up the general framework for hierarchical variableselection with over-
lapping groups, which we adopt here for the functions. Our groups are designed to shrink higher
order interactions similar to hierarchical inclusion restriction in Schimdt and Murphy [8]. We give
a proximal linearization algorithm that efficiently learnsthe complete model. Global convergence is
guaranteed [12]. We then propose a greedy search algorithm to scale our method up to large graphs
as the number of parameters grows exponentially.

2 Conditional Independence in Discrete Undirected Graphical Models

In this section, we first discuss the relationship between the multivariate Bernoulli (MVB) model
and the UGM whose nodes are binary, i.e.Yi = 0 or 1. At the end, we will give the representation
of the general discrete UGM whereYi takes value in{0, · · · ,m− 1}. In UGMs, the distribution of
multivariate discrete random variablesY1, . . . , YK givenX is:

P (Y1 = y1, . . . , YK = yK |X) =
1

Z(X)

∏

C∈C

ΦC(yC ;X) (1)

whereZ(X) is the normalization factor. The distribution is factorized according to the cliques in
the graph. A cliqueC ⊆ Ω = {1, . . . ,K} is the set of nodes that are fully connected.ΦC(yC ;X) is
the potential function onC, indexed byyC = (yi)i∈C . This factorization follows from the Markov
property: any two nodes not in a clique are conditionally independent given others [13]. SoC does
not have to comply with the graph structure, as long as it is sufficient. For example, the most general
choice for any given graph isC = {Ω}. See Theorem 2.1 and Example 2.1 for details.

(a) Graph 1 (b) Graph 2 (c) Graph 3 (d) Graph 4

Figure 1: Graphical model examples.

Given the graph structure, the potential functions characterize the distribution on the graph. But if
the graph is unknown in advance, estimating the potential functions on all possible cliques tends
to be over-parameterized [8]. Furthermore,log ΦC(yC ;X) = 0 is sufficient for the conditional
independence among the nodes but not necessary (see Example2.1). To avoid these problems, we
introduce the MVB model that is equivalent to (1) with binarynodes, i.e.Yi = 0 or 1. The MVB
distribution is:

P (Y1 = y1, . . . , YK = yk|X = x) = exp
{

∑

ω∈ΨK

yωfω − b(f)
}

(2)

= exp
{

y1f
1(x) + · · ·+ yKfK(x) + · · ·+ y1y2f

1,2(x) + · · ·+ y1 . . . yKf1,...,K(x)− b(f)
}
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Here, we use the following notations. LetΨK be the power set ofΩ = {1, . . . ,K}, and
useΨK = ΨK − {∅} to index the2K − 1 fω ’s in (2). Let ω denotes a set inΨK , de-
fine Y = (y1, · · · , yω, · · · , yΩ) be the augmented response withyω =

∏

i∈ω yi. And f =

(f1, . . . , fω, . . . , fΩ) is the vector of conditional log odds ratios [14]. We assumefω is in a Repro-
ducing Kernel Hilbert Space (RKHS)Hω with kernelKω [15]. For example, in our simulation we
choosefω to be B-spline (see supplementary mateiral). We focus on estimating the set offω(x)
with featurex where the sparsity in the set specifies the graph structure.

We present the following lemma and theorem which show the equivalence between UGM and MVB:

Lemma 2.1. In a MVB model, define the odd-even partition of the power set of ω as:Ψω
odd = {κ ⊆

ω | |κ| = |ω| − k,wherek is odd}, andΨω
even = {κ ⊆ ω | |κ| = |ω| − k, wherek is even}. Note

|Ψω
odd| = |Ψω

even| = 2|ω|−1. The following property holds:

fω = log

∏

κ∈Ψω
even

P (Yi = 1, i ∈ κ;Yj = 0, j ∈ Ω\κ|X)
∏

κ∈Ψω

odd

P (Yi = 1, i ∈ κ;Yj = 0, j ∈ Ω\κ|X)
, b(f) = log

Z(x)
∏

C∈C ΦC(0;x)
(3)

Theorem 2.1. A UGM of the general form (1) with binary nodes is equivalent to a MVB model of
(2). In addition, the following are equivalent: 1) There is no |C|-order interaction in{Yi, i ∈ C};
2) There is no cliqueC ∈ ΨK in the graph; 3)fω = 0 for all ω such thatC ⊆ ω.

A proof is given in Appendix. It states that there is a cliqueC in the graph, iff there isω ⊇
C, fω 6= 0 in MVB model. The advantage of modeling by MVB is that the sparsity in fω ’s is
sufficient and necessary for the conditional independence in the graph, thus fully specifying the
graph structure. Specifically,Yi, Yj are conditionally independent ifffω = 0, ω ⊇ {i, j}. This
showed the interaction is non-zero iff all the nodes involved are not conditionally independent.

Example 2.1. WhenK = 2, Ω = {1, 2}, C = {Ω}, denoteΦΩ(Y1 = 1, Y2 = 1;X) as Φ11

for simplicity, thenP (Y1 = 1, Y2 = 1|X) = 1

Z
Φ11. DefineΦ10,Φ01,Φ00 similarly, then the

distribution with UGM parameterization is determined. Therelation between UGM and MVB is

f1 = log
Φ10

Φ00

, f2 = log
Φ01

Φ00

, f1,2 = log
Φ11 · Φ00

Φ01 · Φ10

Note, the independence betweenY1 andY2 implies: f1,2 = 0 or Φ11 · Φ00 = Φ01 · Φ10. Therefore,
f1,2 being zero in MVB model is sufficient and necessary for the conditional independence in the
model. On the other hand,log ΦC = 0 is a sufficient condition but not necessary.

The distribution of a general discrete UGM whereYk ∈ {0, · · · ,m− 1} can be extended from (2).

Lemma 2.2. LetV = {1, . . . ,m− 1}, yω = (yi)i∈ω, then

P (Y1 = y1, · · · , YK = yK |X) = exp
{

Ω
∑

ω=1

∑

v∈V |ω|

I(yω = v)fω
v − b(f)

}

(4)

whereI is an indicator function andV n is the tensor product ofn V ’s. Eachfω is a |V ||ω| vector.

3 Structure Penalty

In many applications, the assumption is that the graph has very few large cliques. Similar to the
hierarchical inclusion restriction in Schmidt and Murphy [8], we will include a higher order inter-
action only when all its subsets are included. Our model is very flexible in thatfω(x) can be in an
arbitrary RKHS.

Let y(i) = (y1(i), . . . , yK(i)), x(i) = (x1(i), . . . , xp(i)) be theith data point. There are|ΨK | =
2K − 1 functions in total. We first consider learning the full modelwhenK is small, and later
propose a greedy search algorithm to scale to large graphs. The penalized log likelihood model is:

min Iλ(f) = L(f) + λJ(f) =

n
∑

i=1

(

− Y(i)T f(x(i)) + b(f)
)

+ λJ(f) (5)
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whereL(f) is the negative log likelihood andJ(·) is the structure penalty. The hierarchical assump-
tion is that if there is no interaction on cliqueC, then allfω should be zero, forω ⊇ C. The penalty
is designed to shrink suchfω toward zero. We consider the Structure Lasso (SLasso) penalty guided
by the lattice in Figure 2. The latticeT has2K − 1 nodes:1, . . . , ω, . . . ,Ω. There is an edge from
ω1 toω2 if and only ifω1 ⊂ ω2 and|ω1|+1 = |ω2|. Jenattonet al. [16] discussed how to define the
groups to achieve different nonzero patterns.

Figure 2: Hierarchical lattice for penalty

Let Tv = {ω ∈ ΨK |v ⊆ ω} be the subgraph rooted atv in T , including all the descendants
of v. DenotefTv = (fω)ω∈Tv

. All the functions are categorized into groups with overlaps as

(T1, . . . , TΩ). The SLasso penalty on the groupTv is: J(fTv ) = pv

√

∑

ω∈Tv
‖fω‖2Hω wherepv is

the weight for the penalty onTv, empirically chosen as1|Tv|
. Then, the objective is:

min
f

Iλ(f) = L(f) + λ
∑

v

pv

√

∑

ω∈Tv

‖fω‖2Hω (6)

The following theorem shows that by minimizing the objective (6),fω1 will enter the model before
fω2 if ω1 ⊂ ω2. That is to say, iffω1 is zero, there will be no higher order interactions onω2. It is
an extension of Theorem 1 in Zhaoet al. [11] and the proof is given in Appendix.

Theorem 3.1. Objective (6) is convex, thus the minimal is attainable. Letω1, ω2 ∈ ΨK andω1 ⊂
ω2. If f̂ is the minimizer of (6) given the observations, that is,0 ∈ ∂Iλ(f̂) which is the subgradient
of Iλ at f̂ , thenf̂ω2 = 0 almost surely iff̂ω1 = 0.

Example 3.1. If K = 3, f = (f1, f2, f3, f1,2, f1,3, f2,3, f1,2,3). The group at node1 in Figure 2
is fT1 = (f1, f1,2, f1,3, f1,2,3) andJ(fT1) = p1

√

‖f1‖2 + ‖f1,2‖2 + ‖f1,3‖2 + ‖f1,2,3‖2.

4 Parameter Estimation

In this section, we discuss parameter estimation where theωth function space is linear asHω =
{1} ⊕Hω

1 for simplicity. {1} refers to the constant function space, andHω
1 is a RKHS with a linear

kernel. The functions inHω have the formfω(x) = cω0 +
∑p

j=1
cωj xj . Its norm is‖fω‖Hω = ‖cω‖,

where‖ · ‖ stands for Euclideanl2 norm. Here, we denotecω = (cω0 , . . . , c
ω
p )

T ∈ R
p+1 as a vector

of lengthp + 1 andc = (cω)ω∈ΨK
∈ R

p̃ is the concatenated vector of all parameters of length
p̃ = (p+ 1) · |ΨK |. Let cTv = (cω)ω∈Tv

be a(p+ 1) · |T v| vector, then the objective (6) is now:

min
c

Iλ(c) = L(c) + λ
∑

v

pv‖c
Tv‖ (7)

4.1 Estimating the complete model on small graphs

Many applications do not involve a large amount of responses, so it is desirable to learn the complete
model when the graph is small for consistency reasons. We propose a method to optimize (7) of the
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Algorithm 1 Proximal Linearization Algorithm
Input: c0, α0, ζ > 1, tol > 0
repeat

Chooseαk ∈ [αmin, αmax]
Solve Eq (8) fordk = c− ck
while δk = Iλ(ck)− Iλ(ck + dk) < ‖dk‖

3 do
// Insufficient decrease
Setαk = max(αmin, ζαk)
Solve Eq (8) fordk

end while
Setαk+1 = αk/ζ
Setck+1 = ck + dk

until δk < tol

complete model with all interaction levels by iteratively solving the following proximal linearization
problem as discussed in Wright [12]:

min
c

Lk +∇LT
k (c− ck) +

αk

2
‖c− ck‖

2 + λJ(c) (8)

whereLk = L(ck), andαk is a positive scalar chosen adaptively atkth step. With slight abuse
of notation, we denoteck as the value ofc at kth step. Algorithm 1 summarized the framework of
solving (7). Following the analysis in Wright [12], we can ensure that the proximal linearization
algorithm will converge for the negative log-likelihood loss function with the SLasso penalty.

However, solving group lasso with overlaps is not trivial due to the non-smoothness at the singular
point. In recent years, several papers have addressed this problem. Jacobet al. [10] duplicated the
design matrix columns that appear in group overlaps, then solved the problem as group lasso without
overlaps. Kim and Xing [17] reparameterized the group norm with additional dummy variables.
They alternatively optimized the model parameters and the dummy ones at each step. It is efficient
for the quadratic loss function on Gaussian data, but might not scale well in our case. Instead, we
solve (8) by its smooth and convex dual problem [18].The details are in the supplementary material.

4.2 Estimating large graphs

The above algorithm is efficient on small graphs (K < 20). It usually terminates within 20 iterations
in our experiments. However, the issue of estimating a complete model is the exponential number
of fω ’s and the same amount of groups involved in objective (7). Itis intractable when the graph
becomes large. The hierarchical assumption and the SLasso penalty lend themselves naturally to a
greedy search algorithm:

1. Start from the set of main effects asA0 = {f1, · · · , fK}.
2. In stepi, remove the nodes that are not inAi from the lattice in Figure 2. Obtain a sparse

estimation of the functions inAi by algorithm (1). Denote the resulting sparse setA′
i.

3. Let Ai+1 = A′
i. Keep adding a higher order interaction intoAi+1 if all its subsets of

interactions are included inA′
i. And also add this node into the lattice in Figure 2.

Iterate step2 and3 until convergence. The algorithm is similar to the active set method in Schmidt
and Murphy [8]. It has multiple runs of algorithm (1) to enforce the hierarchical assumption. It is
not guaranteed to converge to the global optimum. Nonetheless, our empirical experiments show its
ability to scale to large graphs.

5 Experiments

5.1 Toy Data

In the simulation, we create 6 toy graphs. The first four graphs are depicted in Figure 1. Graph 5
has 100 nodes where the first 8 nodes have the same structure asin Figure 1(c) and the others are
independent. Graph 6 also has 100 nodes where the first 10 nodes have the same connection as in
Figure 1(d) and the others are independent. We generate 100 datasets for each structure to evaluate
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the performance. The sample size of each dataset is 1000. Here is how the first data set is generated:
The length of the feature vector,p, is set to 5 in our experiment, i.e.X = (X1, . . . , X5). Each
fω(x) = cω0 +

∑5

j=1
gωj (xj) wheregωj (xj) =

∑D
k=1

cωjkBk(xj) is spanned by the B-spline basis
functions{Bk(·)}k=1,··· ,D (see the supplementary material), whereD is chosen to be 5. The true
set of the model parameters,cωjk, is uniformly sampled from{−5,−4, · · · , 5}. We set the intercepts
cω0 in main effects to1, and those in second or higher order interactions to2. The features,Xj , are
i.i.d uniform on [-1, 1]. Then,Y is sampled according to the probability in equation (2).

We use GACV (generalized approximate cross validation) andBGACV (B-type GACV) [19] to
choose the regularization parameterλ for the complete model (graphs 1-4). We call these variants
of SLasso Complete-GACV and Complete-BGACV. We use AIC for greedy search (Greedy-AIC)
in graphs 5 and 6 due to computational consideration. The range ofλ is chosen according to Koh
et al. [20]. The details of the tuning methods are discussed in the supplementary material. The R
package, BMN, is used as a baseline [4].

Table 1: Number of true positive and false positive functions

Graph Method f1,2 f1,3 f2,3 f3,4 f1,2,3 f5,7,8 f5,6,7,8 FP

1
BMN 60 76 70 60 0 - - 162
Complete-GACV 100 100 100 94 84 - - 136
Complete-BGACV 86 83 83 72 14 - - 11

2
BMN 44 50 38 58 0 - - 412
Complete-GACV 100 99 100 99 83 - - 341
Complete-BGACV 88 91 88 78 33 - - 64

3
BMN 72 64 60 60 0 0 0 830
Complete-GACV 91 87 81 92 62 71 33 412
Complete-BGACV 36 22 23 93 0 39 0 162

4
BMN 48 34 37 29 0 0 - 774
Complete-GACV 92 98 94 90 54 45 - 693
Complete-BGACV 68 68 71 62 0 0 - 144

5 BMN 38 28 26 22 0 0 0 9476
Greedy-AIC 99 99 98 97 22 21 0 1997

6 BMN 28 26 14 26 0 0 - 9672
Greedy-AIC 100 100 100 99 24 15 - 3458

In Table 1, we count, for each functionfω, the number of runs out of 100 wherefω is recovered
(‖cω‖ 6= 0). If a recovered function is in the true model, it is considered a true positive, otherwise a
false positive. The main effects are always detected correctly, thus are not listed in the table. SLasso
is more effective compared to BMN which only considers pairwise interactions.

In Figure 3, we show the learning results in terms of true positive rate (TPR) as sample size increases
from 100 to 1000. The experimental setting is the same as before. The TPRs improve with increas-
ing sample size. GACV achieves better TPR, but higher FPR compared to BGACV. Our method
outperforms BMN in all six graphs.

5.2 Case Study: Census Bureau County Data

We use the county data from U.S. Census Bureau1 to validate our method. We remove the counties
that have missing values and obtain 2668 entries in total. The outcomes of this study are summarized
in Table 2. “Vote” [21] is coded as 1 if the Republican candidate won in the 2004 presidential
election. To dichotomize the remaining outcomes, the national mean is selected as a threshold. The
data is standardized to mean 0 and variance 1. The following features are included: Housing unit
change in percent from 2000-2006, percent of ethnic groups,percent foreign born, percent people
over 65, percent people under 18, percent people with a high school education, percent people
with a bachelors degree; birth rate, death rate, per capita government expenditure in dollars. By
adjustingλ, we observe new interactions enter the model. The graph structure ofλ = 0.1559 is

1http://www.census.gov/statab/www/ccdb.html
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(c) Graph 3 (1%)
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(d) Graph 4 (0.5%)
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Figure 3: The True Positive Rate (TPR) of graph structure learning methods with increasing sam-
ple size. The percentage in the bracket is the upper bound of False Positive Rate (FPR) in each
experiment. BMN always has larger FPR compared to SLasso.

Table 2: Selected response variables

Response Description Positive%
Vote 2004 votes for Republican presidential candidate 81.11
Poverty Poverty Rate 52.70
VCrime Violent Crime Rate, eg. murder, robbery 23.09
PCrime Property Crime Rate, eg. burglary 6.82
URate Unemployment Rate 51.35
PChange Population change in percent from 2000 to 2006 64.96

shown in Figure 4(a). The results of BMN (the tuning parameter is 0.015) is in Figure 4(b). The
unemployment rate plays an important role as a hub as discovered by SLasso, but not by BMN.

(a) SLasso-Complete (b) BMN

Figure 4: Interactions of response variables in the Census Bureau data. The first number on the edge
is the order at which the link is recovered. The number in bracket is the function norm on the clique
and the absolute value of the elements in the concentration matrix, respectively. We note SLasso
discovers at 7th step two third-order interactions which are displayed by two circles in (a).

We analyze the link between “Vote” and “PChange”. Though themarginal correlation between
them (withoutX) is only 0.0389, which is the second lowest absolute pairwise correlation,the
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link is firstly recovered by SLasso. It has been suggested that there is indeed a connection2. This
shows that after taking features into account, the dependence structure of response variables may
change and hidden relations could be discovered. The main factors in this case are “percentage of
housing unit change” (X1) and “population percentage of people over 65” (X2). The part of the
fitted model shown below suggests that as housing units increase, the counties are more likely to
have both positive results for “Vote” and “PChange”. But this tendency will be counteracted by the
increase of people over 65: the responses are less likely to take both positive values.

f̂V ote = 0.2913 ·X1 + 0.3475 ·X2 + · · ·

f̂PChange = 1.4726 ·X1 − 0.3709 ·X2 + · · ·

f̂V ote,PChange = 0.1358 ·X1 − 0.0458 ·X2 + · · ·

6 Conclusions

Our SLasso method can learn the graph structure that is specified by the conditional log odds ratios
conditioned on input featuresX, which allows the graphical model depending on features. The
modeling interprets well, sincefω = 0 iff there is no such clique. An efficient algorithm is given
to estimate the complete model. A greedy approach is appliedwhen the graph is large. SLasso
can be extended to model a general discrete UGM, whereYk takes value in{0, . . . ,m − 1}. Also,
there exist rich selections of the function forms, which makes the model more flexible and powerful,
though modification is needed in solving the proximal subproblem for non-parametric families.

A Proof

A.1 Proof of Theorem 2.1

Proof. Given UGM (1), the corresponding parameterization in MVB model is shown in (3) of
Lemma 2.1. Conversely, given the MVB model of (2), the cliques can be determined by the nonzero
fω: cliqueC exists ifC = ω andfω 6= 0. Then the maximal cliques can be inferred from the
graph structure. And suppose they areC1, . . . , Cm. Let ωi = Ci, for i = 1, . . . ,m, andκ1 = ∅,
κi = Ci ∩ (Ci−1 ∪ · · · ∪ C1), i = 2, . . . ,m. Then the parameterization is:

ΦCi
(yCi

;x) = exp
(

Sωi(y;x)− Sκi(y;x)
)

and Z(x) = exp(b(f)) (9)

whereSω(y;x) =
∑

κ⊆ω yκfκ(x). Thus, UGM (1) with bivariate nodes is equivalent to MVB (2).

In the latter part of the theorem,1 ⇒ 2 and3 ⇒ 1 follow naturally from the Markov property of
graphical models. To show2 ⇒ 3, let yωC be a realization ofyC such thatyωC = (yωi )i∈C where
yωi = 1 if i ∈ ω andyωi = 0 otherwise. Notice that wheneverκ∩C = κ′∩C, we haveyκC = yκ

′

C . For
any possiblev = κ∩C, κ′ ∈ {κ|κ = v ∪ u, s.t.u ⊆ ω− v} will satisfy the condition:κ′ ∩C = v.
There are2|ω−v| suchκ′ in total due to the choice ofu. Also, they appear in the nominator and
denominator of equation (3) equally. So, for anyC ∈ C,

∏

κ∈Ψω
even

ΦC(y
κ
C ;x) =

∏

κ∈Ψω

odd

ΦC(y
κ
C ;x) (10)

It follows thatfω = 0 by (3).

A.2 Proof of Theorem 3.1

Proof. We give the proof for the linear case. The convexity ofIλ is easy to check, sinceL and
J(fTv ) are all convex inc. Suppose there is someω2 ⊃ ω1 s.t. ĉω2 6= 0 andĉω1 = 0, by the groups
constructed through Figure 2,‖ĉTv‖ = ‖(ĉω)v⊆ω‖ 6= 0 for all v ⊆ ω1. So the partial derivative of
the objective (7) with respect tocω1 at ĉω1 is

∂L

∂cω1

∣

∣

∣

∣

cω1=ĉω1

+ λ
∑

v⊆ω1

pv
ĉω1

‖ĉTv‖
= 0 (11)

Thus, the probability of{ĉω2 6= 0} equals to the probability of{ ∂L
∂cω1

∣

∣

cω1=ĉω1
= 0}, which is 0.

2http://www.ipsos-mori.com/researchpublications/researcharchive/2545/Analysis-Population-change-turnout-the-election.aspx
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