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Introduction to Semi-Supervised Learning

Disclaimer

This tutorial reflects my subjective opinions.

Many work cannot be included.

Thank Olivier Chapelle for some of the S3VM figures.
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Introduction to Semi-Supervised Learning

Why bother?

Because people want better performance for free.

the traditional view

unlabeled data is cheap

labeled data can be hard to get

I human annotation is boring
I labels may require experts
I labels may require special devices
I your graduate student is on vacation
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Introduction to Semi-Supervised Learning

Example of hard-to-get labels

Task: speech analysis

Switchboard dataset

telephone conversation transcription

400 hours annotation time for each hour of speech

film ⇒ f ih n uh gl n m
be all ⇒ bcl b iy iy tr ao tr ao l dl
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Introduction to Semi-Supervised Learning

Another example of hard-to-get labels

Task: natural language parsing

Penn Chinese Treebank

2 years for 4000 sentences

“The National Track and Field Championship has finished.”
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Introduction to Semi-Supervised Learning

Example of not-so-hard-to-get labels

a little secret

For some tasks, it may not be too difficult to label 1000+ instances.

Task: image categorization of “eclipse”
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Introduction to Semi-Supervised Learning

Example of not-so-hard-to-get labels

There are ways like the ESP game (www.espgame.org) to encourage
“human computation” for more labels.
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Introduction to Semi-Supervised Learning

Example of not-so-hard-to-get labels

nonetheless...

In this tutorial we will learn how to use unlabeled data to improve
classification.
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Introduction to Semi-Supervised Learning

The Learning Problem

Goal

Using both labeled and unlabeled data to build better learners, than using
each one alone.
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Introduction to Semi-Supervised Learning

Notations

input instance x, label y

learner f : X 7→ Y
labeled data (Xl, Yl) = {(x1:l, y1:l)}
unlabeled data Xu = {xl+1:n}, available during training

usually l� n

test data Xtest = {xn+1:}, not available during training
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Introduction to Semi-Supervised Learning

Semi-supervised vs. transductive learning

labeled data (Xl, Yl) = {(x1:l, y1:l)}
unlabeled data Xu = {xl+1:n}, available during training

test data Xtest = {xn+1:}, not available during training

Semi-supervised learning

is ultimately applied to the test
data (inductive).

Transductive learning

is only concerned with the
unlabeled data.
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Introduction to Semi-Supervised Learning

Why the name

supervised learning (classification, regression) {(x1:n, y1:n)}
l

semi-supervised classification/regression {(x1:l, y1:l), xl+1:n, xtest}
transductive classification/regression {(x1:l, y1:l), xl+1:n}

l
semi-supervised clustering {x1:n,must-, cannot-links}

l
unsupervised learning (clustering) {x1:n}

We will mainly discuss semi-supervised classification.
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Introduction to Semi-Supervised Learning

How can unlabeled data ever help?

21

−1 0 1 x

∆

21
decision boundary (labeled)
unlabeled data
decision boundary (labeled and unlabeled)

labeled data

assuming each class is a coherent group (e.g. Gaussian)

with and without unlabeled data: decision boundary shift

This is only one of many ways to use unlabeled data.
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Introduction to Semi-Supervised Learning

Does unlabeled data always help?

Unfortunately, this is not the case, yet.
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Semi-Supervised Learning Algorithms Self Training
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Semi-Supervised Learning Algorithms Self Training

Self-training algorithm

Assumption

One’s own high confidence predictions are correct.

Self-training algorithm:

1 Train f from (Xl, Yl)
2 Predict on x ∈ Xu

3 Add (x, f(x)) to labeled data

4 Repeat
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Semi-Supervised Learning Algorithms Self Training

Variations in self-training

Add a few most confident (x, f(x)) to labeled data

Add all (x, f(x)) to labeled data

Add all (x, f(x)) to labeled data, weigh each by confidence
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Semi-Supervised Learning Algorithms Self Training

Self-training example: image categorization

Each image is divided into small patches

10× 10 grid, random size in 10 ∼ 20

20 40 60 80 100 120 140

20

40

60

80

100

120

140
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Semi-Supervised Learning Algorithms Self Training

Self-training example: image categorization

All patches are normalized.

Define a dictionary of 200 ‘visual words’ (cluster centroids) with
200-means clustering on all patches.

Represent a patch by the index of its closest visual word.
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Semi-Supervised Learning Algorithms Self Training

The bag-of-word representation of images

→ 1:0 2:1 3:2 4:2 5:0 6:0 7:0 8:3 9:0 10:3 11:31 12:0 13:0 14:0 15:0 16:9 17:1 18:0 19:0 20:1 21:0 22:0 23:0 24:0 25:6

26:0 27:6 28:0 29:0 30:0 31:1 32:0 33:0 34:0 35:0 36:0 37:0 38:0 39:0 40:0 41:0 42:1 43:0 44:2 45:0 46:0 47:0 48:0 49:3 50:0

51:3 52:0 53:0 54:0 55:1 56:1 57:1 58:1 59:0 60:3 61:1 62:0 63:3 64:0 65:0 66:0 67:0 68:0 69:0 70:0 71:1 72:0 73:2 74:0 75:0

76:0 77:0 78:0 79:0 80:0 81:0 82:0 83:0 84:3 85:1 86:1 87:1 88:2 89:0 90:0 91:0 92:0 93:2 94:0 95:1 96:0 97:1 98:0 99:0 100:0

101:1 102:0 103:0 104:0 105:1 106:0 107:0 108:0 109:0 110:3 111:1 112:0 113:3 114:0 115:0 116:0 117:0 118:3 119:0 120:0

121:1 122:0 123:0 124:0 125:0 126:0 127:3 128:3 129:3 130:4 131:4 132:0 133:0 134:2 135:0 136:0 137:0 138:0 139:0 140:0

141:1 142:0 143:6 144:0 145:2 146:0 147:3 148:0 149:0 150:0 151:0 152:0 153:0 154:1 155:0 156:0 157:3 158:12 159:4 160:0

161:1 162:7 163:0 164:3 165:0 166:0 167:0 168:0 169:1 170:3 171:2 172:0 173:1 174:0 175:0 176:2 177:0 178:0 179:1 180:0

181:1 182:2 183:0 184:0 185:2 186:0 187:0 188:0 189:0 190:0 191:0 192:0 193:1 194:2 195:4 196:0 197:0 198:0 199:0 200:0
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Semi-Supervised Learning Algorithms Self Training

Self-training example: image categorization

1. Train a näıve Bayes classifier on the two initial labeled images

2. Classify unlabeled data, sort by confidence log p(y = astronomy|x)

. . .
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Semi-Supervised Learning Algorithms Self Training

Self-training example: image categorization

3. Add the most confident images and predicted labels to labeled data

4. Re-train the classifier and repeat

. . .
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Semi-Supervised Learning Algorithms Self Training

Advantages of self-training

The simplest semi-supervised learning method.

A wrapper method, applies to existing (complex) classifiers.

Often used in real tasks like natural language processing.
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Semi-Supervised Learning Algorithms Self Training

Disadvantages of self-training

Early mistakes could reinforce themselves.
I Heuristic solutions, e.g. “un-label” an instance if its confidence falls

below a threshold.

Cannot say too much in terms of convergence.
I But there are special cases when self-training is equivalent to the

Expectation-Maximization (EM) algorithm.
I There are also special cases (e.g., linear functions) when the

closed-form solution is known.
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Semi-Supervised Learning Algorithms Generative Models
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Semi-Supervised Learning Algorithms Generative Models

A simple example of generative models

Labeled data (Xl, Yl):

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Assuming each class has a Gaussian distribution, what is the decision
boundary?
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Semi-Supervised Learning Algorithms Generative Models

A simple example of generative models

Model parameters: θ = {w1, w2, µ1, µ2,Σ1,Σ2}
The GMM:

p(x, y|θ) = p(y|θ)p(x|y, θ)
= wyN (x;µy,Σy)

Classification: p(y|x, θ) = p(x,y|θ)P
y′ p(x,y′|θ)
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Semi-Supervised Learning Algorithms Generative Models

A simple example of generative models
The most likely model, and its decision boundary:
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Semi-Supervised Learning Algorithms Generative Models

A simple example of generative models

Adding unlabeled data:
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Semi-Supervised Learning Algorithms Generative Models

A simple example of generative models

With unlabeled data, the most likely model and its decision boundary:
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Semi-Supervised Learning Algorithms Generative Models

A simple example of generative models

They are different because they maximize different quantities.

p(Xl, Yl|θ) p(Xl, Yl, Xu|θ)
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Semi-Supervised Learning Algorithms Generative Models

Generative model for semi-supervised learning

Assumption

The full generative model p(X, Y |θ).

Generative model for semi-supervised learning:

quantity of interest: p(Xl, Yl, Xu|θ) =
∑

Yu
p(Xl, Yl, Xu, Yu|θ)

find the maximum likelihood estimate (MLE) of θ, the maximum a
posteriori (MAP) estimate, or be Bayesian
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Semi-Supervised Learning Algorithms Generative Models

Examples of some generative models

Often used in semi-supervised learning:

Mixture of Gaussian distributions (GMM)
I image classification
I the EM algorithm

Mixture of multinomial distributions (Näıve Bayes)
I text categorization
I the EM algorithm

Hidden Markov Models (HMM)
I speech recognition
I Baum-Welch algorithm
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Semi-Supervised Learning Algorithms Generative Models

Case study: GMM

For simplicity, consider binary classification with GMM using MLE.

labeled data only
I log p(Xl, Yl|θ) =

∑l
i=1 log p(yi|θ)p(xi|yi, θ)

I MLE for θ trivial (frequency, sample mean, sample covariance)

labeled and unlabeled data
log p(Xl, Yl, Xu|θ) =

∑l
i=1 log p(yi|θ)p(xi|yi, θ)

+
∑l+u

i=l+1 log
(∑2

y=1 p(y|θ)p(xi|y, θ)
)

I MLE harder (hidden variables)
I The Expectation-Maximization (EM) algorithm is one method to find a

local optimum.
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Semi-Supervised Learning Algorithms Generative Models

The EM algorithm for GMM

1 Start from MLE θ = {w, µ,Σ}1:2 on (Xl, Yl), repeat:

2 The E-step: compute the expected label p(y|x, θ) = p(x,y|θ)P
y′ p(x,y′|θ) for

all x ∈ Xu

I label p(y = 1|x, θ)-fraction of x with class 1
I label p(y = 2|x, θ)-fraction of x with class 2

3 The M-step: update MLE θ with (now labeled) Xu

I wc=proportion of class c
I µc=sample mean of class c
I Σc=sample cov of class c

Can be viewed as a special form of self-training.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 38 / 135



Semi-Supervised Learning Algorithms Generative Models

The EM algorithm for GMM

1 Start from MLE θ = {w, µ,Σ}1:2 on (Xl, Yl), repeat:

2 The E-step: compute the expected label p(y|x, θ) = p(x,y|θ)P
y′ p(x,y′|θ) for

all x ∈ Xu

I label p(y = 1|x, θ)-fraction of x with class 1
I label p(y = 2|x, θ)-fraction of x with class 2

3 The M-step: update MLE θ with (now labeled) Xu

I wc=proportion of class c
I µc=sample mean of class c
I Σc=sample cov of class c

Can be viewed as a special form of self-training.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 38 / 135



Semi-Supervised Learning Algorithms Generative Models

The EM algorithm in general

Set up:
I observed data D = (Xl, Yl, Xu)
I hidden data H = Yu

I p(D|θ) =
∑
H p(D,H|θ)

Goal: find θ to maximize p(D|θ)
Properties:

I EM starts from an arbitrary θ0

I The E-step: q(H) = p(H|D, θ)
I The M-step: maximize

∑
H q(H) log p(D,H|θ)

I EM iteratively improves p(D|θ)
I EM converges to a local maximum of θ
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Semi-Supervised Learning Algorithms Generative Models

Generative model for semi-supervised learning: beyond EM

Key is to maximize p(Xl, Yl, Xu|θ).
EM is just one way to maximize it.

Other ways to find parameters are possible too, e.g., variational
approximation, or direct optimization.
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Semi-Supervised Learning Algorithms Generative Models

Advantages of generative models

Clear, well-studied probabilistic framework

Can be extremely effective, if the model is close to correct
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Semi-Supervised Learning Algorithms Generative Models

Disadvantages of generative models

Often difficult to verify the correctness of the model

Model identifiability

EM local optima

Unlabeled data may hurt if generative model is wrong

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Class 1

Class 2

For example, classifying text by topic vs. by genre.
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Semi-Supervised Learning Algorithms Generative Models

Unlabeled data may hurt semi-supervised learning

If the generative model is wrong:

high likelihood low likelihood
wrong correct

−6 −4 −2 0 2 4 6
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Semi-Supervised Learning Algorithms Generative Models

Heuristics to lessen the danger

Carefully construct the generative model to reflect the task
I e.g., multiple Gaussian distributions per class, instead of a single one

Down-weight the unlabeled data (λ < 1)

log p(Xl, Yl, Xu|θ) =
∑l

i=1 log p(yi|θ)p(xi|yi, θ)

+ λ
∑l+u

i=l+1 log
(∑2

y=1 p(y|θ)p(xi|y, θ)
)
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Semi-Supervised Learning Algorithms Generative Models

Related method: cluster-and-label

Instead of probabilistic generative models, any clustering algorithm can be
used for semi-supervised classification too:

Run your favorite clustering algorithm on Xl, Xu.

Label all points within a cluster by the majority of labeled points in
that cluster.

Pro: Yet another simple method using existing algorithms.

Con: Can be difficult to analyze.
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Semi-Supervised Learning Algorithms S3VMs

Outline

1 Introduction to Semi-Supervised Learning

2 Semi-Supervised Learning Algorithms
Self Training
Generative Models
S3VMs
Graph-Based Algorithms
Multiview Algorithms

3 Semi-Supervised Learning in Nature

4 Some Challenges for Future Research

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 46 / 135



Semi-Supervised Learning Algorithms S3VMs

Semi-supervised Support Vector Machines

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

Maximizes “unlabeled data margin”

+

+

+

+

+

−

−

−

−
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Semi-Supervised Learning Algorithms S3VMs

S3VMs

Assumption

Unlabeled data from different classes are separated with large margin.

S3VM idea:

Enumerate all 2u possible labeling of Xu

Build one standard SVM for each labeling (and Xl)

Pick the SVM with the largest margin
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Semi-Supervised Learning Algorithms S3VMs

Standard SVM review

Problem set up:
I two classes y ∈ {+1,−1}
I labeled data (Xl, Yl)
I a kernel K
I the reproducing Hilbert kernel space HK

SVM finds a function f(x) = h(x) + b with h ∈ HK

Classify x by sign(f(x))
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Semi-Supervised Learning Algorithms S3VMs

Standard soft margin SVMs

Try to keep labeled points outside the margin, while maximizing the
margin:

min
h,b,ξ

l∑
i=1

ξi + λ‖h‖2HK

subject to yi(h(xi) + b) ≥ 1− ξi ,∀i = 1 . . . l

ξi ≥ 0

The ξ’s are slack variables.
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Semi-Supervised Learning Algorithms S3VMs

Hinge function

min
ξ

ξ

subject to ξ ≥ z

ξ ≥ 0

If z ≤ 0, min ξ = 0
If z > 0, min ξ = z
Therefore the constrained optimization problem above is equivalent to the
hinge function

(z)+ = max(z, 0)
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Semi-Supervised Learning Algorithms S3VMs

SVM with hinge function

Let zi = 1− yi(h(xi) + b) = 1− yif(xi), the problem

min
h,b,ξ

l∑
i=1

ξi + λ‖h‖2HK

subject to yi(h(xi) + b) ≥ 1− ξi ,∀i = 1 . . . l

ξi ≥ 0

is equivalent to

min
f

l∑
i=1

(1− yif(xi))+ + λ‖h‖2HK
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Semi-Supervised Learning Algorithms S3VMs

The hinge loss in standard SVMs

minf
∑l

i=1(1− yif(xi))+ + λ‖h‖2HK

yif(xi) known as the margin, (1− yif(xi))+ the hinge loss

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

yif(xi)
Prefers labeled points on the ‘correct’ side.
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Semi-Supervised Learning Algorithms S3VMs

S3VM objective function

How to incorporate unlabeled points?

Assign putative labels sign(f(x)) to x ∈ Xu

sign(f(x))f(x) = |f(x)|
The hinge loss on unlabeled points becomes

(1− yif(xi))+ = (1− |f(xi)|)+

S3VM objective:

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2

n∑
i=l+1

(1− |f(xi)|)+
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The hat loss on unlabeled data

(1− |f(xi)|)+

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

f(xi)
Prefers f(x) ≥ 1 or f(x) ≤ −1, i.e., unlabeled instance away from decision
boundary f(x) = 0.
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Avoiding unlabeled data in the margin

S3VM objective:

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2

n∑
i=l+1

(1− |f(xi)|)+

the third term prefers unlabeled points outside the margin. Equivalently,
the decision boundary f = 0 wants to be placed so that there is few
unlabeled data near it.

+

+

+

+

+

−

−

−

−
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The class balancing constraint

Directly optimizing the S3VM objective often produces unbalanced
classification – most points fall in one class.

Heuristic class balance: 1
n−l

∑n
i=l+1 yi = 1

l

∑l
i=1 yi.

Relaxed class balancing constraint: 1
n−l

∑n
i=l+1 f(xi) = 1

l

∑l
i=1 yi.
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The S3VM algorithm

1 Input: kernel K, weights λ1, λ2, (Xl, Yl), Xu

2 Solve the optimization problem for f(x) = h(x) + b, h(x) ∈ HK

min
f

∑l
i=1(1− yif(xi))+ + λ1‖h‖2HK

+ λ2
∑n

i=l+1(1− |f(xi)|)+

s.t. 1
n−l

∑n
i=l+1 f(xi) = 1

l

∑l
i=1 yi

3 Classify a new test point x by sign(f(x))
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The S3VM optimization challenge
SVM objective is convex:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5
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Semi-supervised SVM objective is non-convex:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Finding a solution for semi-supervised SVM is difficult, which has been the
focus of S3VM research. Different approaches: SVMlight, ∇S3VM,
continuation S3VM, deterministic annealing, CCCP, Branch and Bound,
SDP convex relaxation, etc.
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S3VM implementation 1: SVMlight

Local combinatorial search

Assign hard labels to unlabeled data

Outer loop: “Anneal” λ2 from zero up

Inner loop: Pairwise label switch
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S3VM implementation 1: SVMlight

1 Train an SVM with (Xl, Yl).
2 Sort Xu by f(Xu). Label y = 1,−1 for the appropriate portions.

3 FOR λ̃← 10−5λ2 . . . λ2

1 REPEAT:
2 minf

∑l
i=1(1− yif(xi))+ + λ1‖h‖2HK

+ λ̃
∑n

i=l+1(1− yif(xi))+
3 IF ∃(i, j) switchable THEN switch yi, yj

4 UNTIL No labels switchable
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S3VM implementation 1: SVMlight

i, j ∈ Xu switchable if yi = 1, yj = −1 and

loss(yi = 1, f(xi)) + loss(yj = −1, f(xj))

> loss(yi = −1, f(xi)) + loss(yj = 1, f(xj))

With the hinge loss loss(y, f) = (1− yf)+
−

−

+

+

+
−

−
+

negative

positive
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S3VM implementation 2: ∇S3VM

Make S3VM a standard unconstrained optimization problem:

Revert kernel to primal space

Trick to make class balancing constraint implicit

Smooth the hat loss so it is differentiable (though still non-convex)
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S3VM implementation 2: ∇S3VM

Revert kernel to primal space:

Given kernel k(xi, xj), want z s.t. z>i zj = k(xi, xj)
Cholesky factor of Gram matrix K = B>B, or

Eigen-decomposition K = UΛU>, B = Λ1/2U> (Kernel PCA map)

The z’s are columns of B

f(xi) = w>zi + b, where w is the primal parameter
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S3VM implementation 2: ∇S3VM

Hide class balancing constraint:
1

n−l

∑n
i=l+1(w

>zi + b) = 1
l

∑l
i=1 yi

We can center the unlabeled data
∑n

i=l+1 zi = 0, and

Fix b = 1
l

∑l
i=1 yi

The class balancing constraint is automatically satisfied.
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S3VM implementation 2: ∇S3VM

Smooth the hat loss (1− |f |)+ with a similar-looking Gaussian curve

exp
(
−5f2

)
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Semi-Supervised Learning Algorithms S3VMs

S3VM implementation 2: ∇S3VM

The ∇S3VM problem (b = 1
l

∑l
i=1 yi):

min
w

∑l
i=1(1− yi(w>zi + b))+ + λ1‖w‖2

+λ2
∑n

i=l+1 exp(−5(w>zi + b)2)

Again, increasing λ2 gradually as a heuristic to try to avoid bad local
optima.
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S3VM implementation 3: Continuation method

Global optimization on the non-convex S3VM objective function.

Convolve the objective with a Gaussian to smooth it

With enough smoothing, global minimum is easy to find

Gradually decrease smoothing, use previous solution as starting point

Stop when no smoothing
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S3VM implementation 3: Continuation method

1 Input: S3VM objective R(w), initial weight w0, sequence
γ0 > γ1 > . . . > γp = 0

2 Convolve: Rγ(w) = (πγ)−d/2
∫

R(w − t) exp(−‖t‖2/γ)dt
3 FOR i = 0 . . . p

1 Starting from wi, find local minimizer wi+1 of Rγ
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S3VM implementation 4: CCCP

The Concave-Convex Procedure

The non-convex hat loss function is the sum of a convex term and a
concave term

Upper bound the concave term with a line

Iteratively minimize the sequence of convex functions
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S3VM implementation 4: CCCP

The hat loss
(1− |f |)+ = (|f | − 1)+ + (−|f |) + 1

= + +1
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S3VM implementation 4: CCCP

To minimize R(w) = Rvex(w) + Rcave(w):
1 Input starting point w0

2 t = 0
3 WHILE ∇R(wt) 6= 0

1 wt+1 = arg minz Rvex(z) +∇Rcave(wt)(z − wt) + Rcave(wt)
2 t = t + 1
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Semi-Supervised Learning Algorithms S3VMs

S3VM implementation 5: Branch and Bound

All previous S3VM implementations suffer from local optima.

BB finds the exact global solution.

It uses classic branch and bound search technique in AI.

Unfortunately it can only handle a few hundred unlabeled points.
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Semi-Supervised Learning Algorithms S3VMs

S3VM implementation 5: Branch and Bound

Combinatorial optimization.

A tree of partial labellings on Xu.
I Root node: nothing in Xu labeled
I Child node: one more x ∈ Xu in parent node labeled
I leaf nodes: all x ∈ Xu labeled

Partial labellings have non-decreasing S3VM objective

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2

∑
i∈labeled so far

(1− yif(xi))+
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S3VM implementation 5: Branch and Bound

Depth-first search on the tree

Keep the best complete objective so far

Prune internal node (and its subtree) if it’s worse than the best
objective
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Advantages of S3VMs

Applicable wherever SVMs are applicable

Clear mathematical framework
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Semi-Supervised Learning Algorithms S3VMs

Disadvantages of S3VMs

Optimization difficult

Can be trapped in bad local optima

More modest assumption than generative model or graph-based
methods, potentially lesser gain
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Outline

1 Introduction to Semi-Supervised Learning

2 Semi-Supervised Learning Algorithms
Self Training
Generative Models
S3VMs
Graph-Based Algorithms
Multiview Algorithms

3 Semi-Supervised Learning in Nature

4 Some Challenges for Future Research
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Semi-Supervised Learning Algorithms Graph-Based Algorithms

Example: text classification

Classify astronomy vs. travel articles

Similarity measured by content word overlap

d1 d3 d4 d2
asteroid • •

bright • •
comet •

year
zodiac

.

.

.
airport

bike
camp •

yellowstone • •
zion •

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 79 / 135



Semi-Supervised Learning Algorithms Graph-Based Algorithms

When labeled data alone fails

No overlapping words!

d1 d3 d4 d2
asteroid •

bright •
comet

year
zodiac •

.

.

.
airport •

bike •
camp

yellowstone •
zion •
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Semi-Supervised Learning Algorithms Graph-Based Algorithms

Unlabeled data as stepping stones

Labels “propagate” via similar unlabeled articles.

d1 d5 d6 d7 d3 d4 d8 d9 d2
asteroid •

bright • •
comet • •

year • •
zodiac • •

.

.

.
airport •

bike • •
camp • •

yellowstone • •
zion •
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Another example

Handwritten digits recognition with pixel-wise Euclidean distance

not similar ‘indirectly’ similar
with stepping stones
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Semi-Supervised Learning Algorithms Graph-Based Algorithms

Graph-based semi-supervised learning

Assumption

A graph is given on the labeled and unlabeled data. Instances connected
by heavy edge tend to have the same label.
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The graph

Nodes: Xl ∪Xu

Edges: similarity weights computed from features, e.g.,
I k-nearest-neighbor graph, unweighted (0, 1 weights)
I fully connected graph, weight decays with distance

w = exp
(
−‖xi − xj‖2/σ2

)
Want: implied similarity via all paths

d1

d2

d4

d3
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An example graph

A graph for person identification: time, color, face edges.

image 4005 neighbor 1: time edge neighbor 2: color edge

neighbor 3: color edge neighbor 4: color edge neighbor 5: face edge
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Some graph-based algorithms

mincut

harmonic

local and global consistency

manifold regularization
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The mincut algorithm

The graph mincut problem:

Fix Yl, find Yu ∈ {0, 1}n−l to minimize
∑

ij wij |yi − yj |.
Equivalently, solves the optimization problem

min
Y ∈{0,1}n

∞
l∑

i=1

(yi − Yli)
2 +

∑
ij

wij(yi − yj)2

Combinatorial problem, but has polynomial time solution.
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The mincut algorithm

Mincut computes the modes of a Boltzmann machine

There might be multiple modes

One solution is to randomly perturb the weights, and average the
results.

+ −
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The harmonic function

Relaxing discrete labels to continuous values in R, the harmonic function f
satisfies

f(xi) = yi for i = 1 . . . l

f minimizes the energy∑
i∼j

wij(f(xi)− f(xj))2

the mean of a Gaussian random field

average of neighbors f(xi) =
P

j∼i wijf(xj)P
j∼i wij

,∀xi ∈ Xu
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An electric network interpretation

Edges are resistors with conductance wij

1 volt battery connects to labeled points y = 0, 1
The voltage at the nodes is the harmonic function f

Implied similarity: similar voltage if many paths exist

+1 volt

wij
R  =ij

1

1

0
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A random walk interpretation

Randomly walk from node i to j with probability
wijP
k wik

Stop if we hit a labeled node

The harmonic function f = Pr(hit label 1|start from i)

1

0

i
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An algorithm to compute harmonic function

One way to compute the harmonic function is:

1 Initially, set f(xi) = yi for i = 1 . . . l, and f(xj) arbitrarily (e.g., 0)
for xj ∈ Xu.

2 Repeat until convergence: Set f(xi) =
P

j∼i wijf(xj)P
j∼i wij

,∀xi ∈ Xu, i.e.,

the average of neighbors. Note f(Xl) is fixed.

This can be viewed as a special case of self-training too.
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The graph Laplacian

We can also compute f in closed form using the graph Laplacian.

n× n weight matrix W on Xl ∪Xu

I symmetric, non-negative

Diagonal degree matrix D: Dii =
∑n

j=1 Wij

Graph Laplacian matrix ∆

∆ = D −W

The energy can be rewritten as∑
i∼j

wij(f(xi)− f(xj))2 = f>∆f
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Harmonic solution with Laplacian

The harmonic solution minimizes energy subject to the given labels

min
f
∞

l∑
i=1

(f(xi)− yi)2 + f>∆f

Partition the Laplacian matrix ∆ =
[

∆ll ∆lu

∆ul ∆uu

]
Harmonic solution

fu = −∆uu
−1∆ulYl

The normalized Laplacian L = D−1/2∆D−1/2 = I −D−1/2WD−1/2, or
∆p,Lp are often used too (p > 0).
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Graph spectrum ∆ =
∑n

i=1 λiφiφ
>
i

λ
1
=0.00 λ

2
=0.00 λ

3
=0.04 λ

4
=0.17 λ

5
=0.38

λ
6
=0.38 λ

7
=0.66 λ

8
=1.00 λ

9
=1.38 λ

10
=1.38

λ
11

=1.79 λ
12

=2.21 λ
13

=2.62 λ
14

=2.62 λ
15

=3.00

λ
16

=3.34 λ
17

=3.62 λ
18

=3.62 λ
19

=3.83 λ
20

=3.96
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Relation to spectral clustering

f can be decomposed as f =
∑

i αiφi

f>∆f =
∑

i

α2
i λi

f wants basis φi with small λ

φ’s with small λ’s correspond to clusters

f is a balance between spectral clustering and obeying labeled data
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Problems with harmonic solution

Harmonic solution has two issues

It fixes the given labels Yl

I What if some labels are wrong?
I Want to be flexible and disagree with given labels occasionally

It cannot handle new test points directly
I f is only defined on Xu

I We have to add new test points to the graph, and find a new harmonic
solution
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Local and Global consistency

Allow f(Xl) to be different from Yl, but penalize it

Introduce a balance between labeled data fit and graph energy

min
f

l∑
i=1

(f(xi)− yi)2 + λf>∆f
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Manifold regularization

Manifold regularization solves the two issues

Allows but penalizes f(Xl) 6= Yi using hinge loss

Automatically applies to new test data
I Defines function in kernel K induced RKHS:

f(x) = h(x) + b, h(x) ∈ HK

Still prefers low energy f>1:n∆f1:n

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2f

>
1:n∆f1:n
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Manifold regularization algorithm

1 Input: kernel K, weights λ1, λ2, (Xl, Yl), Xu

2 Construct similarity graph W from Xl, Xu, compute graph Laplacian
∆

3 Solve the optimization problem for f(x) = h(x) + b, h(x) ∈ HK

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2f

>
1:n∆f1:n

4 Classify a new test point x by sign(f(x))
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Advantages of graph-based method

Clear mathematical framework

Performance is strong if the graph happens to fit the task

The (pseudo) inverse of the Laplacian can be viewed as a kernel
matrix

Can be extended to directed graphs
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Disadvantages of graph-based method

Performance is bad if the graph is bad

Sensitive to graph structure and edge weights
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Co-training

Two views of an item: image and HTML text
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Feature split

Each instance is represented by two sets of features x = [x(1);x(2)]
x(1) = image features

x(2) = web page text

This is a natural feature split (or multiple views)

Co-training idea:

Train an image classifier and a text classifier

The two classifiers teach each other
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Co-training assumptions

Assumptions

feature split x = [x(1);x(2)] exists

x(1) or x(2) alone is sufficient to train a good classifier

x(1) and x(2) are conditionally independent given the class

X1 view X2 view
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Co-training algorithm

Co-training algorithm

1 Train two classifiers: f (1) from (X(1)
l , Yl), f (2) from (X(2)

l , Yl).
2 Classify Xu with f (1) and f (2) separately.

3 Add f (1)’s k-most-confident (x, f (1)(x)) to f (2)’s labeled data.

4 Add f (2)’s k-most-confident (x, f (2)(x)) to f (1)’s labeled data.

5 Repeat.
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Pros and cons of co-training

Pros

Simple wrapper method. Applies to almost all existing classifiers

Less sensitive to mistakes than self-training

Cons

Natural feature splits may not exist

Models using BOTH features should do better
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Variants of co-training

Co-EM: add all, not just top k

Each classifier probabilistically label Xu

Add (x, y) with weight P (y|x)
Fake feature split

create random, artificial feature split

apply co-training

Multiview: agreement among multiple classifiers

no feature split

train multiple classifiers of different types

classify unlabeled data with all classifiers

add majority vote label
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Multiview learning

A regularized risk minimization framework to encourage multi-learner
agreement:

min
f

M∑
v=1

(
l∑

i=1

c(yi, fv(xi)) + λ1‖f‖2K

)
+ λ2

M∑
u,v=1

n∑
i=l+1

(fu(xi)− fv(xi))
2

M learners. c() is the loss function, e.g., hinge loss.
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4 Some Challenges for Future Research
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Semi-Supervised Learning in Nature

Do we learn from both labeled and unlabeled data?

Learning exists long before machine learning.

Do humans perform semi-supervised learning?

Yes, it seems. We discuss three human experiments:
1 visual recognition with temporal association
2 infant word-object mapping
3 novel object categorization
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Semi-Supervised Learning in Nature

Visual recognition with temporal association

A face from two angles are very different, but we can easily associate
it.

The image sequence (unlabeled data) might be the glue.

Artificial wrong sequences (person A’s profile morphs to B’s frontal)
damage people’s ability to match test profile and frontal images.
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Semi-Supervised Learning in Nature

Infant word-object mapping

17-month infants listen to a word, see an object

Measure their ability to associate the word and object
I If the word heard many times before (without seeing the object;

unlabeled data), association is stronger.
I If the word not heard before, association is weaker.

Similar to cluster-then-label.
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Semi-Supervised Learning in Nature

Novel object categorization

21

−1 0 1 x

∆

21
decision boundary (labeled)
unlabeled data
decision boundary (labeled and unlabeled)

labeled data

assuming each class is a coherent group (e.g. Gaussian)

machine learning: decision boundary shift

Do we humans shift decision boundary too?
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Semi-Supervised Learning in Nature

Human learning: a behavioral experiment

Determine human decision boundary

labeled data only

labeled and unlabeled data

Participants and materials

22 UW students

told visual stimuli (examples) are microscopic pollens

stimuli displayed one at a time

press ‘b’ or ‘n’ to classify

label is audio feedback
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Semi-Supervised Learning in Nature

Visual stimuli

Stimuli parameterized by a continuous scalar x. Some examples:

−2.5 −2 −1.5 −1

−0.5 0 0.5 1

1.5 2 2.5
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Semi-Supervised Learning in Nature

Experiment procedure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted

Gaussian mixture

range examples

test examples

x

6 blocks
1 20 labeled points at x = −1, 1

2 21 test examples in [−1, 1] (all
unlabeled from now on)

3 230 examples ∼ offset GMM,
plus 21 range examples in
[−2.5, 2.5]

4 similar to block 3

5 similar to block 3

6 21 test examples in [−1, 1] again

12 participants receive left-offset GMM, 10 receive right-offset GMM.
Record their decisions and response times.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 118 / 135



Semi-Supervised Learning in Nature

Experiment procedure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted

Gaussian mixture

range examples

test examples

x

6 blocks
1 20 labeled points at x = −1, 1
2 21 test examples in [−1, 1] (all

unlabeled from now on)

3 230 examples ∼ offset GMM,
plus 21 range examples in
[−2.5, 2.5]

4 similar to block 3

5 similar to block 3

6 21 test examples in [−1, 1] again

12 participants receive left-offset GMM, 10 receive right-offset GMM.
Record their decisions and response times.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 118 / 135



Semi-Supervised Learning in Nature

Experiment procedure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted

Gaussian mixture

range examples

test examples

x

6 blocks
1 20 labeled points at x = −1, 1
2 21 test examples in [−1, 1] (all

unlabeled from now on)

3 230 examples ∼ offset GMM,
plus 21 range examples in
[−2.5, 2.5]

4 similar to block 3

5 similar to block 3

6 21 test examples in [−1, 1] again

12 participants receive left-offset GMM, 10 receive right-offset GMM.
Record their decisions and response times.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 118 / 135



Semi-Supervised Learning in Nature

Experiment procedure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted

Gaussian mixture

range examples

test examples

x

6 blocks
1 20 labeled points at x = −1, 1
2 21 test examples in [−1, 1] (all

unlabeled from now on)

3 230 examples ∼ offset GMM,
plus 21 range examples in
[−2.5, 2.5]

4 similar to block 3

5 similar to block 3

6 21 test examples in [−1, 1] again

12 participants receive left-offset GMM, 10 receive right-offset GMM.
Record their decisions and response times.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 118 / 135



Semi-Supervised Learning in Nature

Experiment procedure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted

Gaussian mixture

range examples

test examples

x

6 blocks
1 20 labeled points at x = −1, 1
2 21 test examples in [−1, 1] (all

unlabeled from now on)

3 230 examples ∼ offset GMM,
plus 21 range examples in
[−2.5, 2.5]

4 similar to block 3

5 similar to block 3

6 21 test examples in [−1, 1] again

12 participants receive left-offset GMM, 10 receive right-offset GMM.
Record their decisions and response times.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 118 / 135



Semi-Supervised Learning in Nature

Experiment procedure

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

left−shifted

Gaussian mixture

range examples

test examples

x

6 blocks
1 20 labeled points at x = −1, 1
2 21 test examples in [−1, 1] (all

unlabeled from now on)

3 230 examples ∼ offset GMM,
plus 21 range examples in
[−2.5, 2.5]

4 similar to block 3

5 similar to block 3

6 21 test examples in [−1, 1] again

12 participants receive left-offset GMM, 10 receive right-offset GMM.
Record their decisions and response times.

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 118 / 135



Semi-Supervised Learning in Nature

Observation 1: unlabeled data affects decision boundary
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test−1, all
test−2, L−subjects
test−2, R−subjects

average decision boundary

after seeing labeled data (block 2): x = 0.11

after seeing labeled and unlabeled data (block 6): L-subjects
x = −0.10, R-subjects x = 0.48
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Semi-Supervised Learning in Nature

Observation 2: unlabeled data affects reaction time
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test−1, all
test−2, L−subjects
test−2, R−subjects

longer reaction time → harder example → closer to decision boundary

block 2: reaction time peak near x = 0.11
block 6: overall faster, familiarity with experiment

L-subjects reaction time plateau around x = −0.1, R-subjects peak
around x = 0.6

Reaction times too suggest decision boundary shift.
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Semi-Supervised Learning in Nature

Machine learning: Gaussian Mixture Model

We can explain the human experiment with a semi-supervised machine
learning model.

A Gaussian Mixture Model θ = {w1, µ1, σ
2
1, w2, µ2, σ

2
2} with 2 components

w1N(µ1, σ
2
1) + w2N(µ2, σ

2
2) , w1 + w2 = 1, wi ≥ 0

Prior wk ∼ Uniform[0, 1], µk ∼ N(0,∞), σ2
k ∼ Inv−χ2(ν, s2), k = 1, 2

Data (assume: remember all, order independent)

D = {(x1, y1), . . . , (xl, yl), xl+1, . . . , xn}

Goal: find θMAP = arg maxθ p(θ)p(D|θ)
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Semi-Supervised Learning in Nature

EM
Maximize the objective (λ ≤ 1 weight on unlabeled example)

log p(θ) +
l∑

i=1

log p(xi, yi|θ) + λ

n∑
i=l+1

log p(xi|θ)

E-step
qi(k) ∝ wkN(xi;µk, σ

2
k), i = l + 1, . . . , n; k = 1, 2

M-step

µk =
∑l

i=1 δ(yi, k)xi + λ
∑n

i=l+1 qi(k)xi∑l
i=1 δ(yi, k) + λ

∑n
i=l+1 qi(k)

σ2
k =

νs2 +
∑l

i=1 δ(yi, k)eik + λ
∑n

i=l+1 qi(k)eik

ν + 2 +
∑l

i=1 δ(yi, k) + λ
∑n

i=l+1 qi(k)

wk =
∑l

i=1 δ(yi, k) + λ
∑n

i=l+1 qi(k)
l + λ(n− l)
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Semi-Supervised Learning in Nature

Model fitting result 1

GMM predicts decision boundary shift:

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

p(
y=

2|
x)

 

 

test−1
test−2, L−data
test−2, R−data

Xiaojin Zhu (Univ. Wisconsin, Madison) Semi-Supervised Learning Tutorial ICML 2007 123 / 135



Semi-Supervised Learning in Nature

Model fitting result 2

Unlabeled data seem to worth less than labeled data (λ = 0.06)
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Semi-Supervised Learning in Nature

Model fitting result 3

GMM explains reaction time:

−1 −0.5 0 0.5 1
400

450

500

550

600

650

700

750

800

850

900

x

fit
te

d 
re

ac
tio

n 
tim

e 
(m

s)

 

 

test−1
test−2, L−data
test−2, R−data

t = aH(x) + b
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Semi-Supervised Learning in Nature

Findings

Humans and machines both perform semi-supervised learning.

Understanding natural learning may lead to new machine learning
algorithms.
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Some Challenges for Future Research
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Some Challenges for Future Research

Challenge 0: Real SSL tasks

What tasks can be dramatically improved by SSL, so that new
functionalities are enabled?

Move from two-moon to the real world
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Some Challenges for Future Research

Challenge 1: New SSL assumptions

Generative models, multiview, graph methods, S3VMs

l∑
i=1

log p(yi|θ)p(xi|yi, θ) + λ

n∑
i=l+1

log

(
c∑

y=1

p(y|θ)p(xi|y, θ)

)

min
f

M∑
v=1

(
l∑

i=1

c(yi, fv(xi)) + λ1‖f‖2K

)
+ λ2

M∑
u,v=1

n∑
i=l+1

(fu(xi)− fv(xi))
2

min
f

l∑
i=1

c(yi, f(xi)) + λ1‖f‖2K + λ2

n∑
i,j=1

wij(f(xi)− f(xj))2

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖f‖2K + λ2

n∑
i=l+1

(1− |f(xi)|)+
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Some Challenges for Future Research

Challenge 1: New SSL assumptions

What other assumptions can we make on unlabeled data? For example:

label dissimilarity yi 6= yj∑
i,j

wij(f(xi)− sijf(xj))2

wij edge confidence; sij = 1: same label, -1: different labels

order preference yi − yj ≥ d for regression

(d− (f(xi)− f(xj))+

New assumptions may lead to new SSL algorithms.
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Some Challenges for Future Research

Challenge 2: Efficiency on huge unlabeled datasets

Some recent SSL datasets as reported in research papers:
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Some Challenges for Future Research

Challenge 3: Safe SSL

no pain, no gain

no model assumption, no gain

wrong model assumption, no gain, a lot of pain

An example where S3VM, graph methods will not work, but GMM will:

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Some Challenges for Future Research

Challenge 3: Safe SSL

How do we know that we are making the right model assumptions?

Which semi-supervised learning method should I use?

If I have labeled AND unlabeled data, I should do at least as well as
only having the labeled data.

How can we make sure that SSL is “safe”?
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Some Challenges for Future Research

Challenge 4: What can we borrow from Natural Learning?

Example: Semi-supervised learning with trees

Tree over labeled and unlabeled data (inspired by taxonomy)

Label mutation process over the edges defines a prior
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Some Challenges for Future Research
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