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Abstract

We study the empirical strategies that humans follow as they teach a target concept
with a simple 1D threshold to a robot.1 Previous studies of computational teach-
ing, particularly the teaching dimension model and the curriculum learning prin-
ciple, offer contradictory predictions on what optimal strategy the teacher should
follow in this teaching task. We show through behavioral studies that humans em-
ploy three distinct teaching strategies, one of which is consistent with the curricu-
lum learning principle, and propose a novel theoretical framework as a potential
explanation for this strategy. This framework, which assumes a teaching goal of
minimizing the learner’s expected generalization error at each iteration, extends
the standard teaching dimension model and offers a theoretical justification for
curriculum learning.

1 Introduction

With machine learning comes the question of how to effectivelyteach. Computational teaching
has been well studied in the machine learning community [9, 12, 10, 1, 2, 11, 13, 18, 4, 14, 15].
However, whether these models can predict howhumansteach is less clear. The latter question is
important not only for such areas as education and cognitive psychology but also for applications of
machine learning, as learning agents such as robots become commonplace and learn from humans.
A better understanding of the teaching strategies that humans follow might inspire the development
of new machine learning models and the design of learning agents that more naturally accommodate
these strategies.

Studies of computational teaching have followed two prominent threads. The first thread, devel-
oped by the computational learning theory community, is exemplified by the “teaching dimension”
model [9] and its extensions [12, 10, 1, 2, 11, 13, 18]. The second thread, motivated partly by ob-
servations in psychology [16], is exemplified by the “curriculum learning” principle [4, 14, 15]. We
will discuss these two threads in the next section. However, they make conflicting predictions on
what optimal strategy a teacher should follow in a simple teaching task. This conflict serves as an
opportunity to compare these predictions to human teaching strategies in the same task.

This paper makes two main contributions: (i) it enriches our empirical understanding of human
teaching and (ii) it offers a theoretical explanation for a particular teaching strategy humans follow.
Our approach combines cognitive psychology and machine learning. We first conduct a behavioral
study with human participants in which participants teach a robot, following teaching strategies
of their choice. This approach differs from most previous studies of computational teaching in
machine learning and psychology that involve a predetermined teaching strategy and that focus on
the behavior of the learner rather than the teacher. We then compare the observed human teaching
strategies to those predicted by the teaching dimension model and the curriculum learning principle.

1Our data is available athttp://pages.cs.wisc.edu/ ∼jerryzhu/pub/humanteaching.tgz .
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Figure 1: The target concepthj .

Empirical results indicate that human teachers follow the curriculum learning principle, while no
evidence of the teaching dimension model is observed. Finally, we provide a novel theoretical
analysis that extends recent ideas in teaching dimension model [13, 3] and offers curriculum learning
a rigorous underpinning.

2 Competing Models of Teaching

We first review the classic teaching dimension model [9, 1]. LetX be an input space,Y the label
space, and(x1, y1), . . . , (xn, yn) ∈ X × Y a set of instances. We focus on binary classification in
the unit interval:X = [0, 1],Y = {0, 1}. We callH ⊆ 2{x1,...,xn} a concept class andh ∈ H a
concept. A concepth is consistent with instance(x, y) iff x ∈ h ⇔ y = 1. h is consistent with a set
of instances if it is consistent with every instance in the set. A set of instances is called a teaching
set of a concepth with respect toH, if h is the only concept inH that is consistent with the set. The
teaching dimension ofh with respect toH is the minimum size of its teaching set. The teaching
dimension ofH is the maximum teaching dimension of its concepts.

Consider the task in Figure 1, which we will use throughout the paper. Letx1 ≤ . . . ≤ xn. LetH be
all threshold labelings:H = {h | ∃θ ∈ [0, 1],∀i = 1 . . . n : xi ∈ h ⇔ xi ≥ θ}. The target concept
hj has the threshold betweenxj andxj+1: hj = {xj+1, . . . , xn}. Then, the teaching dimension
of mosthj is 2, as one needs the minimum teaching set{(xj , 0), (xj+1, 1)}; for the special cases
h0 = {x1, . . . , xn} andhn = ∅ the teaching dimension is 1 with the teaching set{(x1, 1)} and
{(xn, 0)}, respectively. The teaching dimension ofH is 2. For our purpose, the most important
argument is the following:The teaching strategy for mosthj ’s suggested by teaching dimension is
to show two instances{(xj , 0), (xj+1, 1)} closest to the decision boundary.Intuitively, these are the
instances most confusable by the learner.

Alternatively, curriculum learning suggests an easy-to-hard (or clear-to-ambiguous) teaching strat-
egy [4]. For the target concept in Figure 1, “easy” instances are those farthest from the de-
cision boundary in each class, while “hard” ones are the closest to the boundary.One such
teaching strategy is to present instances from alternating classes, e.g., in the following order:
(x1, 0), (xn, 1), (x2, 0), (xn−1, 1), . . . , (xj , 0), (xj+1, 1). Such a strategy has been used for second-
language teaching in humans. For example, to train Japanese listeners on the English [r]-[l] distinc-
tion, McCandlisset al. linearly interpolated a vocal tract model to create a 1D continuum similar
to Figure 1 along [r] and [l] sounds. They showed that participants were better able to distinguish
the two phonemes if they were given easy (over-articulated) training instances first [16]. Compu-
tationally, curriculum learning has been justified as a heuristic related to continuation method in
optimization to avoid poor local optima [4].

Hence, for the task in Figure 1, we have two sharply contrasting teaching strategies at hand: the
boundary strategy starts near the decision boundary, while theextreme strategy starts with ex-
treme instances and gradually approaches the decision boundary from both sides. Our goal in this
paper is to compare human teaching strategies with these two predictions to shed more light on
models of teaching. While the teaching task used in our exploration is simple, as most real-world
teaching situations do not involve a threshold in a 1D space, we believe that it is important to lay the
foundation in a tractable task before studying more complex tasks.

3 A Human Teaching Behavioral Study

Under IRB approval, we conducted a behavioral study with human participants to explore human
teaching behaviors in a task similar to that illustrated in Figure 1. In our study, participants teach
the target concept of “graspability”—whether an object can be grasped and picked up with one
hand—to a robot. We chose graspability because it corresponds nicely to a 1D space empirically
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Figure 2: (a) A participant performing the card sorting/labeling and teaching tasks. (b) Human
teaching sequences that follow theextreme strategy gradually shrink the version spaceV1.

studied before [17]. We chose to use a robot learner because it offers great control and consistency
while facilitating natural interaction and teaching. The robot keeps its behavior consistent across
conditions and trials, therefore, providing us with the ability to isolate various interactional factors.
This level of experimental control is hard to achieve with a human learner. The robot also affords
embodied behavioral cues that facilitate natural interaction and teaching strategies that computers
do not afford.

Participants were 31 paid subjects recruited from the University of Wisconsin–Madison campus.
All were native English speakers with an average age of 21 years.

Materials. We used black-and-white photos ofn = 31 objects chosen from the norming study
of Salmonet al. [17]. The photos were of common objects (e.g., food, furniture, animals) whose
average subjective graspability ratings evenly span the whole range. We printed each photo on a 2.5-
by-4.5 inch card. The robot was a Wakamaru humanlike robot manufactured by Mitsubishi Heavy
Industries, Ltd. It neither learned nor responded to teaching. Instead, it was programmed to follow
motion in the room with its gaze. Though seemingly senseless, this behavior in fact provides a
consistent experience to the participants without extraneous factors to bias them. It also corresponds
to the no-feedback assumption in most teaching models [3]. Participants were not informed that the
robot was not actually learning.

Procedure. Each participant completed the experiment alone. The experiment involved two sub-
tasks that were further broken down into multiple steps. In the first subtask, participants sorted the
objects based on their subjective ratings of their graspability following the steps below.

In step 1, participants were instructed to place each object along a ruler provided on a long table
as seen in Figure 2(a). To provide baselines on the two ends of the graspability spectrum, we fixed
a highly graspable object (a toothbrush) and a highly non-graspable object (a building) on the two
ends of the ruler. We captured the image of the table and later converted the position of each card
into a participant-specific, continuous graspability ratingx1, . . . , xn ∈ [0, 1]. For our purpose, there
is no need to enforce inter-participant agreement.

In step 2, participants assigned a binary “graspable” (y = 1) or “not graspable” (y = 0) label to each
object by writing the label on the back of the corresponding card. This gave us labelsy1, . . . , yn.
The sorted cards and the decision boundary from one of the participants is illustrated in Figure 3.

In step 3, we asked participants to leave the room for a short duration so that “the robot could
examine the sorted cards on the table without looking at the labels provided at the back,” creating
the impression that the learner will associate the cards with the corresponding valuesx1, . . . , xn.

In the second subtask, participants taught the robot the (binary) concept of graspability using the
cards. In this task, participants picked up a card from the table, turned toward the robot, and held
the card up while providing a verbal description of the object’s graspability (i.e., the binary label
y) as seen in Figure 2(a). The two cards, “toothbrush” and “building,” were fixed to the table and
not available for teaching. The participants were randomly assigned into two conditions: (1) natural
and (2) constrained. In the “natural” condition, participants were allowed to use natural language to
describe the graspability of the objects, while those in the “constrained” condition were only allowed
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to say either “graspable” or “not graspable.” They were instructed to use asfew cards as they felt
necessary. There was no time limit on either subtasks.

Results. The teaching sequences from all participants are presented in Figure 4. The title of each
plot contains the participant ID and condition. The participant’s rating and classification of all
objects are presented above thex-axis. Objects labeled as “not graspable” are indicated with blue
circles and those labeled as “graspable” are marked with red plus signs. Thex-axis position of the
object represents its ratingx ∈ [0, 1]. The vertical blue and red lines denote an “ambiguous region”
around the decision boundary; objects to the left of the blue line have the label “not graspable;”
those to the right of the red line are labeled as “graspable,” and objects between these linescould
have labels in mixed order. In theory, following theboundary strategy, the teacher should start with
teaching instances on these two lines as suggested by the teaching dimension model. They-axis is
trial t = 1, . . . , 15, which progresses upwards. The black line and dots represent the participant’s
teaching sequence. For example, participant P01 started teaching att = 1 with an object she rated
asx = 1 and labeled as “graspable;” att = 2, she chose an example with ratingx = 0 and label
“not graspable;” and so on. The average teaching sequence had approximately 8 examples, while
the longest teaching sequence had a length of 15 examples.

We observedthreemajor human teaching strategies in our data: (1) theextreme strategy, which
starts with objects with extreme ratings and gradually moves toward the decision boundary; (2)
the linear strategy, which follows a prominent left-to-right or right-to-left sequence; and (3) the
positive-only strategy, which involves only positively labeled examples. We categorized most
teaching sequences into these three strategies following a simple heuristic. First, sequences that
involved only positive examples were assigned to thepositive-only strategy. Then, we assigned
the sequences whose first two teaching examples had different labels to theextreme strategy and
the others to thelinear strategy. While this simplistic approach does not guarantee perfect clas-
sification (e.g., P30 can be labeled differently), it minimizes hand-tuning and reduces the risk of
overfitting. We made two exceptions, manually assigning P14 and P16 to the extreme strategy.
Nonetheless, these few potential misclassifications do not change our conclusions below.

None of the sequences followed theboundary strategy. In fact, among all 31 participants, 20 started
teaching with the most graspable object (according to their own rating), 6 with the least graspable,
none in or around the ambiguous region (asboundary strategy would predict), and 5 with some
other objects. In brief, people showed a tendency to start teaching with extreme objects, especially
the most graspable ones. During post-interview, when asked why they did not start with objects
around their decision boundary, most participants mentioned that they wanted to start withclear
examples of graspability.

For participants who followed theextreme strategy, we are interested in whether their teaching
sequences approach the decision boundary as curriculum learning predicts. Specifically, at any
time t, let the partial teaching sequence be(x1, y1), . . . , (xt, yt). The aforementioned ambiguous
region with respect to this partial sequence is the interval between the inner-most pair of teaching
examples with different labels. This can be written asV1 ≡ [maxj:yj=0 xj ,minj:yj=1 xj ] wherej is
over1 . . . t. V1 is exactly theversion spaceof consistent threshold hypotheses (the subscript 1 will
become clear in the next section). Figure 2(b) shows a box plot of the size ofV1 for all participants
as a function oft. The red lines mark the median and the blue boxes indicate the 1st & 3rd quartiles.
As expected, the size of the version space decreases.

Figure 3: Sorted cards and the decision boundary from one of the participants.
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Figure 4: Teaching sequences of all participants.

Finally, thepositive-only strategy was observed significantly more in the “natural” condition
(3/16 ≈ 19%) than in the “constrained” condition(0/15 = 0%), χ2(1, N = 31) = 4.27, p = .04.
We observed that these participants elaborated in English to the robot why they thought that their
objects were graspable. We speculate that they might have felt that they had successfully described
therulesand that there was no need to use negative examples. In contrast, the constrained condition
did not have the rich expressivity of natural language, necessitating the use of negative examples.

4 A Theoretical Account of the “Extreme” Teaching Strategy

We build on our empirical results and offer a theoretical analysis as a possible rationalization for the
extreme strategy. Research in cognitive psychology has consistently shown that humans represent
everyday objects with a large number of features (e.g., [7, 8]). We posit that although our teaching
task was designed to mimic the one-dimensional task illustrated in Figure 1 (e.g., the linear layout
of the cards in Figure 3), our teachers might still have believed (perhaps subconsciously) that the
robot learner, like humans, associates each teaching object with multiple feature dimensions.

Under the high-dimensional assumption, we show that theextreme strategy is an outcome of mini-
mizing per-iteration expected error of the learner. Note that the classic teaching dimension model [9]
fails to predict theextreme strategy even under this assumption. Our analysis is inspired by recent
advances in teaching dimension, which assume that teaching progresses in iterations and learning
is to be maximized after each iteration [13, 3]. Different from those analysis, we minimize the
expected errorinstead of theworst-case errorand employ different techniques.

4.1 Problem Setting and Model Assumptions

Our formal set up is as follows. The instance space is thed-dimensional hypercubeX = [0, 1]d. We
use boldfacex ∈ X to denote an instance andxij for thej-th dimension of instancexi. The binary
label y is determined by the threshold12 in the first dimension:yi = 1{xi1≥ 1

2}
. This formulation

idealizes our empirical study where the continuous rating is the first dimension. It implies that the
target concept is unrelated to any of the otherd−1 features. In practice, however, there may be other
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features that are correlated with the target concept. But our analysis carries through by replacingd
with the number of irrelevant dimensions.

Departing from classic teaching models, we consider a “pool-based sequential” teaching setting.
In this setting, a pool ofn instances are samplediid x1, . . . ,xn ∼ p(x), where we assume that
p(x) is uniform onX for simplicity. Their labelsy1 . . . yn may be viewed as being sampled from
the conditional distributionp(yi = 1 | xi) = 1{xi1> 1

2}
. The teacher can only sequentially teach

instances selected from the pool (e.g., in our empirical study, the pool consists of the 29 objects).
Her goal is for the learner to generalize well on test instances outside the pool (also sampled from
p(x, y) = p(x)p(y | x)) after each iteration.

At this point, we make two strong assumptions on the learner. First, we assume that the learner
entertains axis-parallel hypotheses. That is, each hypothesis has the formhkθs(x) = 1{s(x·k−θ)≥0}
for some dimensionk ∈ {1 . . . d}, thresholdθ ∈ [0, 1], and orientations ∈ {−1, 1}. The cogni-
tive interpretation of an axis-parallel hypothesis is that the learner attends to a single dimension at
any given time.2 As in classic teaching models, our learner is consistent (i.e., it never contradicts
with the teaching instances it receives). Theversion spaceV (t) of the learner, i.e., the set of hy-
potheses that is consistent with the teaching sequence(x1, y1), . . . , (xt, yt) so far, takes the form
V (t) = ∪d

k=1Vk(t) whereVk(t) = {hkθ,1 | maxj:yj=0 xjk ≤ θ ≤ minj:yj=1 xjk} ∪ {hkθ,−1 |
maxj:yj=1 xjk ≤ θ ≤ minj:yj=0 xjk}. The version space can be thought of as the union of inner
intervals surviving the teaching examples.

Second, similar to the randomized learners in [2], our learner selects a hypothesish uniformly from
the version spaceV (t), follows it until whenh is no longer inV (t), and then randomly selects a
replacement hypothesis—a strategy known as “win stay, lose shift” in cognitive psychology [5]. It
is thus a Gibbs classifier. In particular, the risk, defined as the expected 0-1 loss of the learner on
a test instance, isR(t) ≡ E(x,y)∼p(x,y)Eh∈V (t)1{h(x) 6=y}. We point out that our assumptions are
psychologically plausible and will greatly simplify the derivation below.

4.2 Starting with Extreme Teaching Instances is Asymptotically Optimal

We now show why starting with extreme teaching instances as in curriculum learning, as opposed
to theboundary strategy, is optimal under our setting. Specifically, we consider the problem of se-
lecting an optimal teaching sequence of lengtht = 2, one positive and one negative,(x1, 1), (x2, 0).
Introducing the shorthanda ≡ x11, b ≡ x21, the teacher seeksa, b to minimize the risk:

min
a,b∈[0,1]

R(2) (1)

Note that we allowa, b to take any value within their domains, which is equivalent to having an
infinite pool for the teacher to choose from. We will tighten it later. Also note that we assume the
teacher does not pay attention to irrelevant dimensions, whose feature values can then be modeled
by uniform random variables.

For any teaching sequence of length 2, the individual intervals of the version space are of size
|V1(2)| = a − b, |Vk(2)| = |x1k − x2k| for k = 2 . . . d, respectively. The total size of
the version space is|V (2)| = a − b +

∑d
k=2 |x1k − x2k|. Figure 5(a) shows that for all

h1θ11 ∈ V1(2), the decision boundary is parallel to the true decision boundary and the test
error is E(x,y)∼p(x,y)1{h1θ11(x) 6=y} = |θ1 − 1/2|. Figure 5(b) shows that for allhkθks ∈
∪d

k=2Vk(2), the decision boundary is orthogonal to the true decision boundary and the test error

is 1/2. Therefore, we haveR(2) = 1
|V (2)|

(∫ a

b
|θ1 − 1/2|dθ1 +

∑d
k=2

∫ max(x1k,x2k)

min(x1k,x2k)
1
2dθk

)
=

1
|V (2)|

(
1
2 ( 1

2 − b)2 + 1
2 (a− 1

2 )2 +
∑d

k=2
1
2 |x1k − x2k|

)
. Introducing the shorthandck ≡ |x1k −

x2k|, c ≡
∑d

k=2 ck, one can writeR(2) = ( 1
2−b)2+(a− 1

2 )2+c

2(a−b+c) . The intuition is that a pair of teach-
ing instances lead to a version spaceV (2) consisting of one interval per dimension. A random
hypothesis selected from the interval in the first dimensionV1(2) can range from good (ifθ1 is close

2A generalization to arbitrary non-axis parallel linear separators is possible in theory and would be interest-
ing. However, non-axis parallel linear separators (known as “information integration” in psychology) are more
challenging for human learners. Consequently, our humanteachersmight not have expected the robot learner
to perform information integration either.
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Figure 5: (a) A hypothesish1θ11 ∈ V1(2) is parallel to the true decision boundary, with test error
|θ1−1/2| (shaded area). (b) A hypothesish2θ2s ∈ V2(2) is orthogonal to the true decision boundary,
with test error 1/2 (shaded area). (c) Theoretical teaching sequences gradually shrink|V1|, similar
to human behaviors.

to 1/2) to poor (θ1 far away from 1/2), while one selected from∪d
k=2Vk(2) is always bad. The

teacher can optimize the risk by choosing the size ofV1(T ) related to the total version space size.
The optimal choice is specified by the following theorem.

Theorem 1. The minimum riskR(2) is achieved ata =
√

c2+2c−c+1
2 , b = 1− a.

Proof. First, we show that at the minimuma, b are symmetric around1/2, i.e.,b = 1− a. Suppose

not. Then,(a+b)/2 = 1/2+ε for someε 6= 0. Leta′ = a−ε, b′ = b−ε. Then,(
1
2−b′)2+(a′− 1

2 )2+c

2(a′−b′+c) =
( 1
2−b)2+(a− 1

2 )2+c−2ε2

2(a−b+c) <
( 1
2−b)2+(a− 1

2 )2+c

2(a−b+c) the minimum, a contradiction. Next, substitutingb =
1− a in R(2) and setting the derivative w.r.t.a to 0 proves the theorem.

Recall thatc is the size of the part of the version space in irrelevant dimensions. Whend → ∞,
c →∞ and the solution isa = 1, b = 0. Here, the learner can form so many bad hypotheses in the
many wrong dimensions that the best strategy for the teacher is to makeV1(2) as large as possible,
even though many hypotheses inV1(2) have nonzero error.

Corollary 2. The minimizer to(1) is a = 1, b = 0 when the dimensionalityd →∞.

Proof. We characterize the distribution ofck by considering the distance between two random vari-
ablesx1k, x2k sampled uniformly in[0, 1]. Let z(1), z(2) be the values ofx1k, x2k sorted in an
ascending order. Thenck = z(2) − z(1) is an instance oforder statistics[6]. One can show
that, in general witht independentunif[0, 1] random variables sorted in an ascending order as
z(1), . . . , z(j), z(j+1), . . . , z(t), the distancez(j+1) − z(j) follows a Beta(1, t) distribution. In our
case witht = 2, ck ∼ Beta(1, 2), whose mean is 1/3 as expected. It follows thatc is the sum of
d− 1 independent Beta random variables. Asd →∞, c →∞. Let γ = 1/c. Applying l’Hôpital’s
rule, limc→∞ a = limc→∞

√
c2+2c−c+1

2 = limγ→0

√
1+2γ−1+γ

2γ = 1.

Corollary 2 has an interesting cognitive interpretation; the teacher only needs to pay attention to the
relevant (first) dimensionx11, x21 when selecting the two teaching instances. She does not need to
consider the irrelevant dimensions, as those will add up to a largec, which simplifies the teacher’s
task in choosing a teaching sequence; she simply picks two extreme instances in the first dimension.
We also note that in practiced does not need to be very large fora to be close to 1. For example,
with d = 10 dimensions, the averagec is 1

3 (d − 1) = 3 and the correspondinga = 0.94, with
d = 100, a = 0.99. This observation provides further psychological plausibility to our model.

So far, we have assumed an infinite pool, such that the teacher can select the extreme teaching
instances withx11 = 1, x21 = 0. In practice, the pool is finite and the optimala, b values specified
in Theorem 1 may not be attainable within the pool. However, it is straightforward to show that
limc→∞ R′(t) < 0 where the derivative is w.r.t.a after substitutingb = 1 − a. That is, in the
case ofc → ∞, the objective in (1) is a monotonically decreasing function ofa. Therefore, the
optimal strategy for a finite pool is to choose the negative instance with the smallestx·1 value and
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the positive instance with the largestx·1 value. Note the similarity to curriculum learning which
starts with extreme (easy) instances.

4.3 The Teaching Sequence should Gradually Approach the Boundary

Thus far, we have focused on choosing the first two teaching instances. We now show that, as
teaching continues, the teacher should choose instances witha andb gradually approaching1/2.
This is a direct consequence of minimizing the riskR(t) at each iteration, asc decreases to 0. In this
section, we study the speed by whichc decreases to 0 anda to 1/2.

Consider the moment when the teacher has already presented a teaching sequence
(x1, y1), . . . , (xt−2, yt−2) and is about to select the next pair of teaching instances(xt−1, 1), (xt, 0).
Teaching with pairs is not crucial but will simplify the analysis. Following the discussion after Corol-
lary 2, we assume that the teacher only pays attention to the first dimension when selecting teaching
instances. This assumption allows us to again model the other dimensions as random variables. The
teacher wishes to determine the optimala = xt−1,1, b = xt,1 values according to Theorem 1. What
is the value ofc for a teaching sequence of lengtht?
Theorem 3. Let the teaching sequence containt0 negative labels andt − t0 positive ones. Then
the random variablesck = αkβk, whereαk ∼ Bernoulli

(
2/

(
t
t0

)
, 1− 2/

(
t
t0

))
(with values 1, 0

respectively) andβk ∼ Beta(1, t) independently fork = 2 . . . d. Consequently,E(c) = 2(d−1)(
t
t0

)
(1+t)

.

Proof. We show that for each irrelevant dimensionk = 2 . . . d, aftert teaching instances,|Vk(t)| =
αkβk. As mentioned above, theset teaching instances can be viewed asunif[0, 1] random variables
in the kth dimension. Sort the valuesx1k, . . . , xtk in ascending order. Denote the sorted values
asz(1), . . . , z(t). Vk(t) is non-empty only if the labels happen to be linearly separable, i.e., either
z(1) . . . z(t0) having negative labels while the rest having positive labels or the other way around.
Consider the corresponding analogy where one randomly selects a permutation oft items (there are
t! permutations), such that the selected permutation has firstt0 items with negative labels and the rest
with positive labels (there aret0!(t − t0)! such permutations). This probability corresponds toαk.
WhenVk(t) is nonempty, its size|Vk(t)| is characterized by the order statisticsz(t0+1)−z(t0), which
corresponds to the Beta random variableβk as mentioned earlier in the proof of Corollary 2.

As the binomial coefficient in the denominator ofE(c) suggests,c decreases to 0 rapidly witht,
becauset randomly-placed labels in 1D are increasingly unlikely to be linearly separable. Following
Theorem 1, the corresponding optimala, b approach 1/2. Due to the form of Theorem 1, the pace is
slower. To illustrate how fast the optimal teaching sequence approaches 1/2 in the first dimension,
Figure 5(c) shows a plot of|V1| = a − b as a function oft by usingE(c) in Theorem 1 (note in
general that this is notE(|V1|), but only a typical value). We sett0 = t/2. This plot is similar to the
one we produced from human behavioral data in Figure 2(b). For comparison, that plot is copied
here in the background. Because the effective number of independent dimensionsd is unknown, we
present several curves for differentd’s. Some of these curves provide a qualitatively reasonable fit
to human behavior, despite the fact that we made several simplifying model assumptions.

5 Conclusion and Future Work

We conducted a human teaching experiment and observed three distinct human teaching strategies.
Empirical results yielded no evidence for theboundary strategy but showed that theextreme
strategy is consistent with the curriculum learning principle. We presented a theoretical framework
that extends teaching dimension and explains two defining properties of theextreme strategy: (1)
teaching starts with extreme instances and (2) teaching gradually approaches the decision boundary.

Our framework predicts that, in the absence of irrelevant dimensions (d = 1), teaching should start
at the decision boundary. To verify this prediction, in our future work, we plan to conduct additional
human teaching studies where the objects have no irrelevant attributes. We also plan to further
investigate and explain thelinear strategy and thepositive-only strategy that we observed in
our current study.
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