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One Goal of Cognitive Psychology

. is to identify the algorithm in our mind
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Human Semi-Supervised Learning?

* * o o

training: key /&= key N0

stimulus x feedback

@ A computer can hold a trained classifier f fixed during testing.

@ A human may not

* <

test: key key
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© Will unlabeled test items change the classifier in humans mind?
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This work answers two questions:
© Will unlabeled test items change the classifier in humans mind? (yes)

» Two identical people A, B receiving exactly the same training data
> The test data (without label feedback) is different
» Because of this difference, they disagree on certain test items

@ How to model test-item effect? (3 semi-supervised models)
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Test-Item Effect 1: Order of Test Iltems

*reeeo
o 1D feature space -2 -1 0 1 2
@ 10 labeled items, five pairs of (x,y) = (—2,0),(2,1)

@ Two conditions, 20 subjects each:

» L to R: test item -2,-1.95-19, . . . , 2
» R to L: reverse order.

@ Subjects in “L to R" classify more test items as y = 0, and vice versa.

@ For test items in [-1.2, 0.1], a majority-vote among subjects will
classify them in opposite ways in these two conditions.
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Test-Item Effect 2: Distribution of Test Items [AAAI 07]

@ Same feature space

@ 20 labeled items, ten pairs of (x,y) = (—1,0),(1,1)

@ 22 subjects. Test items drawn from two-component GMM. Two
conditions:

> L shifted: GMM py = —1.43, o = 0.57
> R shifted: GMM p; = —0.57, o = 1.43
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@ Same feature space
@ 20 labeled items, ten pairs of (x,y) = (—1,0),(1,1)
@ 22 subjects. Test items drawn from two-component GMM. Two
conditions:
> L shifted: GMM py = —1.43, o = 0.57
> R shifted: GMM p; = —0.57, o = 1.43

O early L-shifted

C P S e
O early R-shifted o

+  late L-shifted

+ late R—shifted g

g
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@ Early (in first 50 test items) decision boundaries the same

o Late (after 700 test items) boundaries shifted according to condition
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Test-lItem Effect as Semi-Supervised Learning

Standard human category learning models in psychology cannot explain
test-item effects

@ exemplar model ~ nonparametric kernel regression

@ prototype model ~ Gaussian mixture model

© rational model of categorization = Dirichlet process mixture model
We propose semi-supervised extensions to these models

e incremental (online) learning to better fit human experience

@ minimum number of parameters to prevent overfitting
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o Extends the generalized context model (Nosofsky, 1986)

@ Self-training Nadaraya-Watson kernel estimator
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Model 1: Semi-Supervised Exemplar Model

o Extends the generalized context model (Nosofsky, 1986)

@ Self-training Nadaraya-Watson kernel estimator

Parameter: kernel bandwidth h

_ K(In T N
r(zn) = S0 Wzﬁ at 0.5
e

forn=1,2,... do
Receive x,,, predict its label by thresholding
hac
n==;
Receive y,, (may be unlabeled), update model:
if Y, is unlabeled then

:gn = T(-Tn)
else
yn =Un
end if
end for
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Model 2: Semi-Supervised Prototype Model

@ Extends prototype models (Posner & Keele, 1968)

e Incremental EM on GMM (Neal & Hinton, 1998), but without
revisiting old items
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Model 2: Semi-Supervised Prototype Model

@ Extends prototype models (Posner & Keele, 1968)

@ Incremental EM on GMM (Neal & Hinton, 1998), but without
revisiting old items

@ Track parameters of GMM via sufficient statistics

» If input (x,y) labeled, its contribution to sufficient statistics is

¢($, y) = (1 - Y, (1 - y):c, (1 - y)x2,y,yx,yx2)
> If input x unlabeled, it is

Eyngld(z,9)] = Y a)d(z,y)

y=0,1

where q(y) = p(y|z, 0) is the label posterior under the current model
> Initialize sufficient statistics as ¢ = (ng, 0, ng, 1o, 0,10): 1o pseudo
items with mean 0 and variance 1.
> ng is the only parameter.
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o Extends RMC (Anderson 1990, Griffiths et al. 2008)
@ Dirichlet Process Mixture Model (DPMM) marginalizd over y
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o Extends RMC (Anderson 1990, Griffiths et al. 2008)
@ Dirichlet Process Mixture Model (DPMM) marginalizd over y

» stack [z;y] and use a single global DPMM (key difference to Aclass
(Mansinghka et al. 2007))
> G~ DP(G(),OQ)

* base measure Go = Normal-Gamma x Beta (conjugate priors for
Normal and binomial)
* 2 is the only parameter

> 01...0, ~ G, where § = (u, \,p)

* 11, A the mean and precision of a Gaussian for the  component
* p the “head” probability for the y component

> (z4,9:) ~ F(x,y|0;), F = Gaussian x Bernoulli
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Introduce cluster index z

Integrate out # and G via particle filtering

Each particle is a vector of indices z1.,_1

“Grow" particle by z,, weight proportional to likelihood

P(yn—1 | 21:n—1, Y1:n—2)P(zn | 21:n—1)P (20, | 20, 21:m—1, T1:m—1)

@ For semi-supervised DPMM, the y term is a beta-binomial with
marginalization
c1+ o
co+c1+ar+ 5

P(ynq | Zl:nflaylzan) =

» If y,_1 unlabeled, define the probability to be 1
> |If some of y;.,_o unlabeled, skip them in counting

n—2 n—2
c1 =Y 6(zi,20-1)8(y, 1) o= Y 8(2520-1)8(1i, 0)
=1 1=1
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Parameter Tuning for All Three Models

@ Divide subjects into training and test groups

@ Maximize training group human prediction likelihood:

x _ [s] [s]  [8]
0 argméxxﬁtr _ZZlogP | 21 Yim—1,0)

sEtr n

where 6 is h, ng, as for the three models, respectively.
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x _ [s] [s]  [8]
0 argm;xxﬁtr ZZlOgP | 21 Yim—1,0)
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where 6 is h, ng, as for the three models, respectively.
exemplar prototype RMC
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Model Fitting Results

Performance comparison on test group:

SSL SSL SSL
exemplar prototype RMC

o* h=06 n9p=12 «as=0.3
lie(0F) | -3727 -2460 -2169

Semi-supervised RMC has the best fit, semi-supervised exemplar model the
worst.
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Attempts to Save Semi-Supervised Exemplar Model

@ What if we down-weight unlabeled items?

r(x) = i

z”: w; K (F5)
i=1 Z;L:I wi K (% hmj)

w; = 1 if x; labeled, w; = w otherwise
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Attempts to Save Semi-Supervised Exemplar Model

@ What if we down-weight unlabeled items?

r(z)

w; = 1if X; Iabeled, w;

@ Learned w = 0.2. Test group loglik -2934, still worse.

weighted exemplar
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Attempts to Save Semi-Supervised Exemplar Model

@ What if we down-weight unlabeled items?
n wiK(z—mi)
r@) =)
i=1 Zj:l w; K ( A )

w; = 1 if x; labeled, w; = w otherwise
@ Learned w = 0.2. Test group loglik -2934, still worse.

weighted exemplar exemplar prototype RMC
-5000 =501 -5000
-6000
_ -6000 -6000 -6000
-8000) = _70004/\\\\ "~ ~7000 ~ 7000
—10000 — -8000 —
1 2 8000— =08 1 5 10 15 20 8000 2000 2
w (fix h=0.6) h N, og(a,)

@ Model predictions still qualitatively poor:
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Conclusions

Contributions
@ Test-item effects in humans

@ Semi-supervised extension of exemplar, prototype, and ration model
of categorization

» All three models exhibit test-item effects
» Semi-supervised RMC the best
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Conclusions

Contributions
@ Test-item effects in humans

@ Semi-supervised extension of exemplar, prototype, and ration model
of categorization

» All three models exhibit test-item effects
» Semi-supervised RMC the best

@ Take home message: cognitive psychology ideal application for
machine learning.
» Coming soon: Cognitive Modeling Repository
http://www.cmr.osu.edu/
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