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Abstract

We study the problem of robust reinforcement
learning under adversarial corruption on both re-
wards and transitions. Our attack model assumes
an adaptive adversary who can arbitrarily corrupt
the reward and transition at every step within an
episode, for at most e-fraction of the learning
episodes. Our attack model is strictly stronger
than those considered in prior works. Our first
result shows that no algorithm can find a bet-
ter than O(e)-optimal policy under our attack
model. Next, we show that surprisingly the nat-
ural policy gradient (NPG) method retains a nat-
ural robustness property if the reward corruption
is bounded, and can find an O(4/¢)-optimal pol-
icy. Consequently, we develop a Filtered Pol-
icy Gradient (FPG) algorithm that can tolerate
even unbounded reward corruption and can find
an O(e'/*)-optimal policy. We emphasize that
FPG is the first that can achieve a meaningful
learning guarantee when a constant fraction of
episodes are corrupted. Complimentary to the
theoretical results, we show that a neural imple-
mentation of FPG achieves strong robust learning
performance on the MuJoCo continuous control
benchmarks.

1. Introduction

Policy gradient methods are a popular class of Reinforce-
ment Learning (RL) methods among practitioners, as they
are amenable to parametric policy classes (Schulman et al.,
2015b; 2017), resilient to modeling assumption mismatches
(Agarwal et al., 2019; 2020a), and they directly optimizing
the cost function of interest. However, one current drawback
of these methods and most existing RL algorithms is the lack
of robustness to data corruption, which severely limits their
applications to high-stack decision-making domains with
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highly noisy data, such as autonomous driving, quantitative
trading, or medical diagnosis.

In fact, data corruption can be a larger threat in the RL
paradigm than in traditional supervised learning, because
supervised learning is often applied in a controlled environ-
ment where data are collected and cleaned by highly-skilled
data scientists and domain experts, whereas RL agents are
developed to learn in the wild using raw feedbacks from
the environment. While the increasing autonomy and less
supervision mark a step closer to the goal of general artifi-
cial intelligence, they also make the learning system more
susceptible to data corruption: autonomous vehicles can
misread traffic signs when the signs are contaminated by
adversarial stickers (Eykholt et al., 2018); chatbot can be
mistaught by a small group of tweeter users to make misog-
ynistic and racist remarks (Neff & Nagy, 2016); recom-
mendation systems can be fooled by a small number of
fake clicks/reviews/comments to rank products higher than
they should be. Despite the many vulnerabilities, robust-
ness against data corruption in RL has not been extensively
studied only until recently.

The existing works on robust RL are mostly theoretical and
can be viewed as a successor of the adversarial bandit litera-
ture. However, several drawbacks of this line of approach
make them insufficient to modern real-world threats faced
by RL agents. We elaborate them below:

1. Reward vs. transition contamination: The majority of
prior works on adversarial RL focus on reward contam-
ination (Even-Dar et al., 2009; Neu et al., 2010; 2012;
Zimin & Neu, 2013; Rosenberg & Mansour, 2019; Jin
et al., 2020a), while in reality the adversary often has
stronger control during the adversarial interactions. For
example, when a chatbot interacts with an adversarial
user, the user has full control over both the rewards and
transitions during that conversation episode.

2. Density of contamination: The existing works that do
handle adversarial/time-varying transitions can only tol-
erate sublinear number of interactions being corrupted
(Lykouris et al., 2019; Cheung et al., 2019; Ornik &
Topcu, 2019; Ortner et al., 2019). These methods would
fail when the adversary’s attack budget also grows lin-
early with time, which is often the case in practice.

3. Practicability: The majority of these work focuses on
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the setting of tabular MDPs and cannot be applied to
real-world RL problems that have large state and action
spaces and require function approximations.

In this work, we address the above shortcomings by devel-
oping a variant of natural policy gradient (NPG) methods
that, under the linear value function assumption, are prov-
ably robust against strongly adaptive adversaries, who can
arbitrarily contaminate both rewards and transitions in &
fraction of all learning episodes. Our algorithm does not
need to know ¢, and is adaptive to the contamination level.
Specifically, it guarantees to find an O(el/ 4)-optimal policy
in a polynomial number of steps. Complementarily, we also
present a corresponding lower-bound, showing that no algo-
rithm can consistently find a better than () optimal policy,
even with infinite data. In addition to the theoretical results,
we also develop a neural network implementation of our
algorithm which is shown to achieve strong robustness per-
formance on the MuJoCo continuous control benchmarks
(Todorov et al., 2012), proving that our algorithm can be
applied to real-world, high-dimensional RL problems.

2. Related Work

Policy Gradient and Policy Optimization Policy Gradi-
ent (Williams, 1992; Sutton et al., 1999) and Policy opti-
mization methods are widely used in practice (Kakade &
Langford, 2002; Schulman et al., 2015b; 2017) and have
demonstrated amazing performance on challenging appli-
cations (Berner et al., 2019; Akkaya et al., 2019). Un-
like model-based approach or Bellman-backup based ap-
proaches, PG methods directly optimize the objective func-
tion and are often more robust to model-misspecification
(Agarwal et al., 2020a). In addition to being robust to model-
misspecification, we show in this work that vanilla NPG
is also robust to constant fraction and bounded adversar-
ial corruption on both rewards and transitions. Additional
discussions on other RL algorithms in standard stochastic
MDPs can be found in appendix A.

RL with adversarial rewards. Almost all prior works on
adversarial RL study the setting where the reward functions
can be adversarial but the transitions are still stochastic and
remain unchanged throughout the learning process. Specifi-
cally, at the beginning of each episode, the adversary must
decide on a reward function for this episode, and can not
change it for the rest of the episode. Also, the majority
of these works focus on tabular MDPs. Early works on
adversarial MDPs assume a known transition function and
full-information feedback. For example, (Even-Dar et al.,
2009) proposes the algorithm MDP-E and proves a regret
bound of O(7+/T log A) in the non-episodic setting, where
T is the mixing time of the MDP; Later, (Zimin & Neu, 2013)
consider the episodic setting and propose the O-REPS algo-
rithm which applies Online Mirror Descent over the space of

occupancy measures, a key component adopted by (Rosen-
berg & Mansour, 2019) and (Jin et al., 2020a). O-REPS
achieves the optimal regret O(+/H2T log(SA)) in this set-
ting. Several works consider the harder bandit feedback
model while still assuming known transitions. The work
(Neu et al., 2010) achieves regret O(v H3AT /o) assum-
ing that all states are reachable with some probability «
under all policies. Later, (Neu et al., 2010) eliminates the
dependence on « but only achieves O(T2/3) regret. The O-
REPS algorithm of (Zimin & Neu, 2013) again achieves the
optimal regret O(v H3SAT). To deal with unknown transi-
tions, (Neu et al., 2012) proposes the Follow the Perturbed
Optimistic Policy algorithm and achieves O(v/ H252A2T')
regret given full-information feedback. Combining the idea
of confidence sets and Online Mirror Descent, the UC-O-
REPS algorithm of (Rosenberg & Mansour, 2019) improves
the regret to O(V H2S2AT). A few recent works start to
consider the hardest setting assuming unknown transition
as well as bandit feedback. (Rosenberg & Mansour, 2019)
achieves O(T/%) regret, which is improved by (Jin et al.,
2020a) to O(v/ H2S2AT), matching the regret of UC-O-
REPS in the full information setting. Also, note that the
lower bound of Q(vVH2SAT) (Jin et al., 2018) still ap-
plies. In summary, it is found that on tabular MDPs with
oblivious reward contamination, an O(\/T ) regret can still
be achieved. Recent improvements include best-of-both-
worlds algorithms (Jin & Luo, 2020), data-dependent bound
(Lee et al., 2020) and extension to linear function approxi-
mation (Neu & Olkhovskaya, 2020).

RL with adversarial transitions and rewards. Very few
prior works study the problem of both adversarial transi-
tions and adversarial rewards, in fact, only one that we are
aware of (Lykouris et al., 2019). They study a setting where
only a constant C' number of episodes can be corrupted by
the adversary, and most of their technical effort dedicate
to designing an algorithm that is agnostic to C, i.e. the
algorithm doesn’t need to know the contamination level
ahead of time. As a result, their algorithm takes a multi-
layer structure and cannot be easily implemented in practice.
Their algorithm achieves a regret of O(C/T) for tabular
MDPs and O(C?+/T) for linear MDPs, which unfortunately
becomes vacuous when C' > Q(+/T) and C' > Q(T'/4),
respectively. Note that the contamination ratio C/T ap-
proaches zero when T increases, and hence their algorithm
cannot handle constant fraction contamination. Notably, in
all of the above works, the adversary can partially adapt
to the learner’s behavior, in the sense that the adversary
can pick an adversary MDP M, or reward function ry, at
the start of episode k£ based on the history of interactions
so far. However, it can no longer adapt its strategy after
the episode starts, and therefore, the learner can still use a
randomization strategy to trick the adversary.

A separate line of work studies the online MDP setting,
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where the MDP is not adversarial but slowly change over
time, and the amount of change is bounded under a total-
variation metric (Cheung et al., 2019; Ornik & Topcu, 2019;
Ortner et al., 2019; Domingues et al., 2020). Due to the
slow-changing nature of the environment, algorithms in
these works typically uses a sliding window approach where
the algorithm keeps throwing away old data and only learns
a policy from recent data, assuming that most of them come
from the MDP that the agent is currently experiencing.
These methods typically achieve a regret in the form of
O(A°K'~¢), where A is the total variation bound. It is
worth noting that all of these regrets become vacuous when
the amount of variation is linear in time, i.e. A > Q(T).
Separately, it is shown that when both the transitions and
the rewards are adversarial in every episode, the problem
is at least as hard as stochastic parity problem, for which
no computationally efficient algorithm exists (Yadkori et al.,
2013).

Learning robust controller. A different type of robustness
has also been considered in RL (Pinto et al., 2017; Der-
man et al., 2020) and robust control (Zhou & Doyle, 1998;
Petersen et al., 2012), where the goal is to learn a control
policy that is robust to potential misalignment between the
training and deployment environment. Such approaches are
often conservative, i.e. the learned polices are sub-optimal
even if there is no corruption. In comparison, our approach
can learn as effectively as standard RL algorithms without
corruption.

Robust statistics. One of the most important discoveries in
modern robust statistics is that there exists computationally
efficient and robust estimator that can learn near-optimally
even under the strongest adaptive adversary. For example, in
the classic problem of Gaussian mean estimation, the recent
works (Diakonikolas et al., 2016; Lai et al., 2016) present the
first computational and sample-efficient algorithms. The al-
gorithm in (Diakonikolas et al., 2016) can generate a robust
mean estimate [, such that ||i — pll2 < O(ey/log (1/¢))
under ¢ corruption. Crucially, the error bound does not scale
with the dimension d of the problem, suggesting that the
estimator remains robust even in high dimensional problems.
Similar results have since been developed for robust mean
estimation under weaker assumptions (Diakonikolas et al.,
2017), and for supervised learning and unsupervised learn-
ing tasks (Charikar et al., 2017; Diakonikolas et al., 2019).
We refer readers to (Diakonikolas & Kane, 2019) for a more
thorough survey of recent advances in high-dimensional
robust statistics.

3. Problem Definitions

A Markov Decision Process (MDP) M =
(S, A, P,r,v, uo) is specified by a state space S, an action
space A, a transition model P : § x A — A(S) (where

A(S) denotes a distribution over S), a (stochastic and
possibly unbounded) reward function r : S x A — A(R), a
discounting factor y € [0, 1), and an initial state distribution
o € A(S), ie. so ~ po. In this paper, we assume that
A is a small and finite set, and denote A = |.A|. A policy
7 : S — A(A) specifies a decision-making strategy in
which the agent chooses actions based on the current state,
ie,an~m(s).

The value function V™ : § — R is defined as the expected
discounted sum of future rewards, starting at state s and ex-
ecuting 7, i.e. V7 (s) := E[> 72 v'r(se, ae)|m, so = ],
where the expectation is taken with respect to the random-
ness of the policy and environment M. Similarly, the state-
action value function Q™ : § x A — R is defined as
Q7 (s,a) = E[Y 72 v'r(se, ar)|m, 50 = 8,00 = a) -

We define the discounted state-action distribution d7 of a
policy m: d7 (s,a) := (1 — 7)Y ;20 V' P™ (st = s,a4 =
alsp = §'), where P™(s; = s,a; = alsg = &) is
the probability that s; = s and a; = a, after we exe-
cute 7 from ¢ = 0 onwards starting at state s’ in model
M. Similarly, we define df, ,/(s,a) as: df, ,/(s,a) =
(1 =X P (st = s,ar = slso = s',a0 = d).
For any state-action distribution v, we write d7}(s,a) =
2 (s anesxav(s’,a')d3 (s, a). For ease of presentation,
we assume that the agent can reset to sg ~ fo at any point
in the trajectory. We denote d;(s) = >, dJ (s, a).

The goal of the agent is to find a policy 7 that maximizes the
expected value from the starting state sg, i.e. the optimiza-
tion problem is: max, V™ (o) := Esp, V7 (), where the
max is over some policy class.

For completeness, we specify a d,-sampler and an unbiased
estimator of Q™ (s, a) in Algorithm 1, which are standard
in discounted MDPs (Agarwal et al., 2019; 2020a). The d,
sampler samples (s, a) i.i.d from d7, and the Q™ sampler
returns an unbiased estimate of Q™ (s, a) for a given pair
(s,a) by a single roll-out from (s, a). Later, when we de-
fine the contamination model and the sample complexity
of learning, we treat each call of d]-sampler (optionally
followed by a Q™ (s, a)-estimator) as a single episode, as in
practice both of these procedures can be achieved in a single
roll-out from .

Assumption 3.1 (Linear Q function). For the theoretical
analysis, we focus on the setting of linear value function
approximation. In particular, we assume that there exists
a feature map ¢ : S x A — R%, such that for any (s, a) €
S x A and any policy 7 : § — A 4, we have

Q™ (s,a) = ¢(s,a) W™, for some |w™|| < W (1)

We also assume that the feature is bounded, i.e.
maxs q ||¢(s,a)l|l2 < 1, and the reward function has
bounded first and second moments, i.e. E [r(s,a)] € [0,1]
and Var(r(s,a)) < o2 forall (s,a).
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Remark 3.1. Assumption 3.1 is satisfied, for example, in
tabular MDPs and linear MDPs of (Jin et al., 2020b) or
(Yang & Wang, 2019a). Unlike most theoretical RL litera-
ture, we allow the reward to be stochastic and unbounded.
Such a setup aligns better with applications with a low
signal-to-noise ratio and motivates the requirement for non-
trivial robust learning techniques.

Notation. When clear from context, we write d™ (s, a) and
d”(§) to denpte dzo(s.7 a) and .d/’jo(s.) Fespectively. Eor it-
erative algorithms which obtain policies at each episode,
we let V',QQ" and A’ denote the corresponding quanti-
ties associated with episode 7. For a vector v, we denote
— 2 — —
[vll2 = /2250 vl = 225 [vil, and [[v]| o = max; [v;].
We use Uniform(.A) (in short Unif 4) to represent a uniform
distribution over the set A.

3.1. The Contamination Model

In this paper, we study the robustness of policy gradient
methods under the e-contamination model, a widely studied
adversarial model in the robust statistics literature, e.g. see
(Diakonikolas et al., 2016). In the classic robust mean esti-
mation problem, given a dataset D and a learning algorithm
f, the e-contamination model assumes that the adversary has
full knowledge of the dataset D and the learning algorithm
f, and can arbitrarily change e-fraction of the data in the
dataset and then send the contaminated data to the learner.
The goal of the learner is to identify an O(poly(¢))-optimal
estimator of the mean despite the e-contamination.

Unfortunately, the original e-contamination model is de-
fined for the offline learning setting and does not directly
generalize to the online setting, because it doesn’t spec-
ify the availability of knowledge and the order of actions
between the adversary and the learner in the time dimen-
sion. In this paper, we define the e-contamination model for
online learning as follows:

Definition 3.1 (e-contamination model for Reinforce-
ment Learning). Given ¢ and the clean MDP M, an e-
contamination adversary operates as follows:

1. The adversary has full knowledge of the MDP M and
the learning algorithm, and observes all the historical
interactions.I

2. At any time step ¢, the adversary observes the current
state-action pair (s¢, at ), as well as the reward and next
state returned by the environment, (ry, s;11). He then
can decide whether to replace (r¢, s¢11) with an arbitrary
reward and next state (r], SI_H) eERxS.

3. The only constraint on the adversary is that if the learning
process terminates after K episodes, he can contaminate
in at most e K episodes.

Compared to the standard adversarial models studied in
online learning (Shalev-Shwartz et al., 2011), adversarial

bandits (Bubeck & Cesa-Bianchi, 2012; Lykouris et al.,
2018; Gupta et al., 2019) and adversarial RL (Lykouris
et al., 2019; Jin et al., 2020a), the e-contamination model in
Definition 3.1 is stronger in several ways: (1) The adversary
can adaptively attack after observing the action of the learner
as well as the feedback from the clean environments; (2) the
adversary can perturb the data arbitrarily (any real-valued
reward and any next state from the state space) rather than
sampling it from a pre-specified bounded adversarial reward
function or adversarial MDP.

Given the contamination model, our first result is a lower-
bound, showing that under the e-contamination model, one
can only hope to find an O(e)-optimal policy. Exact optimal
policy identification is not possible even with infinite data.

Theorem 3.1 (lower bound). For any algorithm, there exists
an MDP such that the algorithm fails to find an (ﬁ) -

optimal policy under the e-contamination model with a
probability of at least 1 /4.

The high-level idea is that we can construct two MDPs, M
and M’, with the following properties: 1. No policy can
be O(e/(1 — 7)) optimal on both MDP simultaneously. 2.
An e-contamination adversary can with large probability
mimic one MDP via contamination in the other, regardless
of the learner’s behavior. Therefore, under contamination,
the learner will not be able to distinguish M and M’ and
must suffer (/(1 — ~)) gap on at least one of them.

3.2. Background on NPG

Given a differentiable parameterized policy mp : S —
A(A), NPG can be written in the following actor-critc
style update form. With the dataset {s;, a;, Q™ (s;, a;)} ¥,
where s;,a; ~ d7¢, and @“" (84, ;) is unbiased estimate of
Q7 (s, a) (e.g., via Q™ -estimator), we have

N
~ 2
W € arg min Z (wTVIOg mo(a;ls;) — Q”(si,ai))

wil|wl[2<W ;55

0 =0+ no. )

In theoretical part of this work, we focus on softmax linear
policy, i.e., mg(als) o< exp(f T ¢(s,a)). In this case, note
that Vlog mg(als) = ¢(s,a), and it is not hard to verify
that the policy update procedure is equivalent to:

7o (a|s) o mp(als) exp (n@Tcﬁ(s, a)), Vs,a,

which is equivalent to running Mirror Descent on each state
with a reward vector 0 ' ¢(s, -) € R, We refer readers to
(Agarwal et al., 2019) for more detailed explanation of NPG
and the equivalence between the form in Eq. (2) and the
classic form that uses Fisher information matrix. Similar to
(Agarwal et al., 2019), we make the following assumption
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of having access to an exploratory reset distribution, under
which it has been shown that NPG can converge to the
optimal policy without contamination.

Assumption 3.2 (Relative condition number). With respect
to any state-action distribution v, define:

EU - ]Es,aNU [¢s7a¢la] ’
and define

T
Ed*’w *
Sup ————— = K, where d* (s,

D W a) = dZ; (s) o Unif 4(a)
we v

We assume & is finite and small w.r.t. a reset distribution v
available to the learner at training time.

4. The Natural Robustness of NPG Against
Bounded Corruption

Our first result shows that, surprisingly, NPG can already
be robust against e-contamination, if the adversary can only
generate small and bounded rewards. In particular, we as-
sume that the adversarial rewards is bounded in [0, 1] (the
feature ¢(s, a) is already bounded).

Theorem 4.1 (Natural robustness of NPG). Under assump-
tions 3.1 and 3.2, given a desired optimality gap «, there
exists a set of hyperparameters agnostic to the contami-
nation level €, such that Algorithm 2 guarantees with a
poly(1/a,1/(1 — ), |Al, W, 0, k) sample complexity that
under e-contamination with adversarial rewards bounded
in [0, 1], we have

E [V*(10) = V7 (no)] <O (max [O‘,W mp

where 7 is the uniform mixture of 7 through (™)

A few remarks are in order.

Remark 4.1 (Agnostic to the contamination level €). It is
worth emphasizing that to achieve the above bound, the
hyperparameters of NPG are agnostic to the value of ¢,
and so the algorithm can be applied in the more realistic
setting where the agent does not have knowledge of the con-
tamination level e, similar to what’s achieved in (Lykouris
et al., 2019) with a complicated nested structure. The same
property is also achieved by the FPG algorithm in the next
section.

Remark 4.2 (Dimension-independent robustness guaran-
tee). Theorem 4.1 guarantees that NPG can find an O(¢'/2)-
optimal policy after polynomial number of episodes, pro-
vided that | A| and x are small. Conceptually, the relative
condition number x indicates how well-aligned the initial
state distribution is to the occupancy distribution of the opti-
mal policy. A good initial distribution can have a x as small

as 1, and so « is independent of d. Interested readers can
refer to (Agarwal et al., 2019) (Remark 6.3) for additional
discussion on the relative condition number. Here, impor-
tantly, the optimality gap does not directly scale with d,
and so the guarantee will not blow up on high-dimensional
problems. This is an important attribute of robust learn-
ing algorithms heavily emphasized in the traditional robust
statistics literature.

The proof of Theorem 4.1 relies on the following NPG
regret lemma, first developed by (Even-Dar et al., 2009)
for the MDP-Expert algorithm and later extend to NPG by
(Agarwal et al., 2019; 2020a):

Lemma 4.1 (NPG Regret Lemma). Suppose Assump-
tion 3.1 and 3.2 hold and Algorithm 2 starts with 0 =,
1 = +/2log|A|/(W?2T). Suppose in addition that the (ran-

dom) sequence of iterates satisfies the assumption that

B By | (@7 (500 = o0.0)T0®) ]| < 2l

Then, we have that

Z{V po) = V@ (o)}

W d |A\f<¢€
S ﬁ \/ log |A Z ,‘;)tgt .

Intuitively, Lemma 4.1 decompose the regret of NPG into
two terms. The first term corresponds to the regret of stan-
dard mirror descent procedure, which scales with V/T. The
second term corresponds to the estimation error on the Q
value, which acts as the reward signal for mirror descent.
When not under attack, estimation error 5212” goes to zero
as the number of samples M gets larger, which in turn im-

plies the global convergence of NPG. However, when under

bounded attack, the generalization error 5(%)(” will not go to

zero even with infinite data. Nevertheless, we can show that
it is bounded by O(¢(")) when the sample size M is large
enough, where £(*) denotes the fraction of episodes being
corrupted in iteration ¢. Note that by definition, we have
S, e® <eT.

Lemma 4.2 (Robustness of linear regression under bounded
contamination). Suppose the adversarial rewards are
bounded in [0,1), and in a particular iteration t, the ad-
versary contaminates € fraction of the episodes, then
given M episodes, it is guaranteed that with probability at
least 1 — 0,

3)

()

E; ana® [(Q” (s,0) = <z>(s,a>Tw“>)1 4)

4
<4(W?+WH) <s(t) +1/ 7 log ;)
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Algorithm 1 d], sampler and Q™ estimator

Algorithm 3 Robust Linear Regression via SEVER

1: function d7-SAMPLER

2:  Input: A reset distribution v € A(S x A).

3: Sample sg, ag ~ v.

4: Execute 7 from sg, ag; at any step ¢ with (s, at),
return (¢, a;) with probability 1 —

5: function Q™ -ESTIMATOR

6:  Input: current state-action (s, a), a policy .

7: Execute 7 from (sg,a0) = (s,a); at step ¢ with
(s, ar), terminate with probability 1 — .

8  Return: Q7 (s,a) = S2'_, r(si, a;).

[In an adversarial episode, the adversary can hijack the dJ,
sampler to return any (s, a) pair and the ()™ -estimator to
return any Q7 (s, a) € R.]

Algorithm 2 Natural Policy Gradient (NPG)
Require: Learning rate n; number of episodes per iteration
M
1: Initialize 6(*) = 0.
2: fort=0,1,...,7 —1do
3: Call Algorithm 1 M times with 7® to obtain a
~ d¥ and Q) (s;, a;),

dataset that consist of s;, a;

i€ [M].
4: Solve the linear regression problem
t) Z t) T ( ) 2
= arg min ( (84,a4) Voo(si,a; )
lwlla<W 5=

5. Update 8¢+ = ) 4 ™),

where H = (log § — log M)/ log ~ is the effective horizon.
This along with the NPG regret lemma guarantees that the
expected regret of NPG is bounded by O(v/T 4+ M~/* +
\/€T) which in turn guarantees to identify an O(./2)-

optimal policy.

5. FPG: Robust NPG Against Unbounded
Corruption

Our second result is the Filtered Policy Gradient (FPG) algo-
rithm, a robust variant of the NPG algorithm (Kakade, 2001;
Agarwal et al., 2019) that can be robust against arbitrary and
potentially unbounded data corruption. Specifically, FPG
replace the standard linear regression solver in NPG with
a statistically robust alternative. In this work, we use the
SEVER algorithm (Diakonikolas et al., 2019). In practice,
one can substitute it with any computationally efficient ro-
bust linear regression solver. We show that FPG can find
an O(sl/ 4)-optimal policy under e-contamination with a
polynomial number of samples.

1: Input: Dataset {(z;,¥;)}i=1.M, a standard linear re-
gression solver £, and parameter o’ € R...
Initialize S < {1,..., M}, fi(w) = |ly; — w 'z
repeat

w < L({(zi, ;) }ics). > Run learner on S.

LetV = ﬁ ZiGS Vfl( )
Let G = [V f;(w) — V]ies be the |S| x d matrix of
centered gradients.

AN A

7: Let v be the top right singular vector of G.
8: Compute the vector 7 of outlier scores defined via
N 2
= ((Vfilw) = 9)-v)".
9: S '+ S
10: if ﬁ Zies 7; < ¢g - 0’2, for some constant ¢y > 1
then
11: S = 5’ > We only filter out points if the variance

is larger than an appropriately chosen threshold.
12: else
13: Draw T from Uniform[0, max; 7;].
14: S={ieS:n<T}.
15: until S = 5’.
16: Return w.

Theorem 5.1. Under assumptions 3.1 and 3.2, given a de-
sired optimality gap o, there exists a set of hyperparameters
agnostic to the contamination level ¢, such that Algorithm
2, using Algorithm 3 as the linear regression solver, guar-
antees with a poly(1/a,1/(1 — ), |A|, W, 0, k) sample
complexity that under e-contamination, we have

E [V*(10) — V7 (j10))] 5)

<0 (max [a \/|A| W2+UW) 1/4]>.

) through =(T).

where 7 is the uniform mixture of =1

The proof of Theorem 5.1 relies on a similar result to Lemma
4.2, which shows that if we use Algorithm 3 as the linear re-
gression subroutine, then sg?at can be bounded by O(vz(®)
when the sample size M is large enough, even under un-
bounded e-contamination.

Lemma 5.1 (Robustness of SEVER under unbounded con-
tamination). Suppose the adversarial rewards are un-
bounded, and in a particular iteration t, the adversarial
contaminate ) fraction of the episodes, then given M
episodes, it is guaranteed that if €V < ¢, for some absolute
constant ¢, and any constant T € 0, 1], we have

E [Es,awdm [(Q”m(&a) - o»(s,a)Tw“))zH ©)
<o<(w2 1UW>(@+deM z+7)>.
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Figure 1. Experiment Results on the 6 MuJoTo benchmarks.

where f(d, ) = v/dlogd + /log(1/1).

In Lemma 5.1, c is the break point of SEVER and is an
absolute constant that does not depend on the data, and
(1—7) is the probability that the clean data satisfies a certain
stability condition which suffices for robust learning.

6. Experiments

In the theoretical analysis, we rely on the assumption of
linear Q function, finite action space and exploratory ini-
tial state distribution to prove the robustness guarantees for
NPG and FPG. In this section, we present a practical im-
plementation of FPG, based on the Trusted Region Policy
Optimization (TRPO) algorithm (Schulman et al., 2015a), in
which the conjugate gradient step (equivalent to the linear
regression step in Alg. 2) is robustified with SEVER. The
pseudo-code and implementation details are discussed in
appendix G. In this section, we demonstrate its empirical
performance on the MuJoCo benchmarks (Todorov et al.,
2012), a set of high-dimensional continuous control do-
mains where both assumptions no longer holds, and show
that FPG can still consistently performs near-optimally with
and without attack.

Attack mechanism: While designing and calculating the
optimal attack strategy against a deep RL algorithm is still a
challenging problem and active area of research (Ma et al.,
2019; Zhang et al., 2020), here we describe the poisoning
strategy used in our empirical evaluation, which, despite
being simple, can fool non-robust RL algorithms with ease.
Conceptually, policy gradient methods can be viewed as a
stochastic gradient ascent method, where each iteration can

be simplified as:
g+ — gt 4 4 (7

where ¢(*) is a gradient step that ideally points in the di-
rection of fastest policy improvement. Assuming that g(*)
is a good estimate of the gradient direction, then a simple
attack strategy is to try to perturb ¢ to point in the —g(*)
direction, in which case the policy, rather than improving,
will deteriorate as learning proceed. A straightforward way
to achieve this is to flip the rewards and multiply them by
a big constant J in the adversarial episodes. In the linear
regression subproblem of Alg. 2, this would result in a set
of (z,y) pairs whose y becomes —dy. This in expectation
will make the best linear regressor w point to the opposite
direction, which is precisely what we want.

This attack strategy is therefore parameterized by a single
parameter §, which guides the magnitude of the attack, and
is adaptively tuned against each learning algorithm in the
experiments: Throughout the experiment, we set the con-
tamination level ¢ = 0.01, and tune § among the values
of [1,2,4,8,16,32,64] to find the most effective magni-
tude against each learning algorithm. All experiments are
repeated with 3 random seeds and the mean and standard
deviations are plotted in the figures.

Results: The experiment results are shown in Figure 1.
Consistent patterns can be observed across all environments:
vanilla TRPO performs well without attack but fails com-
pletely under the adaptive attack (which choose § = 64
in all environments). FPG, on the other hand, matches the
performance of vanilla TRPO with or without attack. Figure
2 showcase two half-cheetah control policies learned by
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Figure 2. Consecutive Frames of Half-Cheetah trained with TRPO (top row) and FPG (bottom row) respectively under 6 = 100 attack.
TRPO was fooled to learn a “running backward” policy, contrasted with the normal “running forward” policy learned by FPG.
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Figure 3. Detailed Resul

TRPO and FPG under attack with § = 100. Interestingly,
due to the large negative adversarial rewards, TRPO actu-
ally learns the “running backward” policy, showing that our
attack strategy indeed achieves what it’s designed for. In
contrast, FPG is still able to learn the “running forward”
policy despite the attack.

Figure 3 shows the detailed performances of TRPO and FPG
across different §’s on the hardest Humanoid environment.
One can observe that TRPO actually learns robustly under at-
tacks of small magnitude (§ = 1, 2, 4) and achieves similar
performances to itself in clean environments, verifying our
theoretical result in Theorem 4.1. In contrast, FPG remains
robust across all values of §’s. Figure 3c shows the pro-
portion of adversary data detected and removed by FPG’s
filtering subroutine throughout the learning process. One
can observe that as the attack norm § increases, the filtering
algorithm also does a better job detecting the adversarial
data and thus protect the algorithm from getting inaccurate
gradient estimates. Similar patterns can be observed in all
the other environments, and we defer the additional figures
to the appendix.

(b) FPG Rewards

400 600
iterations

800 1000 1] 200 800 1000

(¢) FPG Detection Ratio

ts on Humanoid-v3.

7. Discussions

To summarize, in this work we present a robust policy gradi-
ent algorithm FPG, and show theoretically and empirically
that it can learn in the presence of strong data corruption.
Despite our results, many open questions remain unclear:

1. FPG does not handle exploration and relies on an ex-

ploratory initial distribution. Can we design algorithms

that achieve the same dimension-free robustness guaran-
tee without such assumptions?

Our O(¢'/*) upper-bound and O(¢) lower-bound are not

tight. Information theoretically, what is the best robust-

ness guarantee one can achieve under e-contamination?

. The SEVER algorithm requires computing the top eigen-
value of an n X d matrix, which is memory and time
consuming when using large neural networks (large d).
More computationally efficient robust learning method
will be extremely valuable to make FPG truly scale.

. In the experiment, we focus on TRPO as the closest
variant of NPG. Can other policy gradient algorithm,
such as PPO and SAC, be robustified in similar fashions
and achieve strong empirical performance?

We believe that answering these questions will be important
steps towards robust reinforcement learning.
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