Game Redesign in No-regret Game Playing

Yuzhe Ma, Young Wu, Xiaojin (Jerry) Zhu
Motivation

• Many real-world problems are intrinsically multi-agent games
 • Rock-Paper-Scissors
 • Gambling
 • Decision making in economic or societal fields.

• Players are selfish: Nash Equilibrium might lead to suboptimal global objective.

• Shape the behavior (selected actions) of the players.
Mechanism Design

• Designer is the rule maker
 • Designer may not have full control over the game

• Assume agents are rational players
 • In case of multiple NE, which NE is adopted by rational players
Game Redesign

• The original loss function is $\ell^o(a) = (\ell^o_1(a), ..., \ell^o_M(a))$, $\ell^o_i(a) \in [L, U], \forall i$

• Players apply no-regret learning algorithms (e.g., EXP3.P) to play the game T rounds

• In round $t = 1, ..., T$:
 - Players take actions $a^t = (a^t_1, ..., a^t_M)$
 - Original loss is $\ell^o(a^t)$
 - Designer changes the loss to $\ell(a^t)$
 - Player i observes loss $\ell_i(a^t)$ instead of $\ell^o_i(a^t)$
 - Designer incurs redesign cost $C(\ell^o, \ell, a^t)$ (e.g., $||\ell^o(a^t) - \ell(a^t)||_1$)
Game Redesign Goal

• Force all players to take a target action profile a^\dagger as often as possible

$$\sum_{t=1}^{T} 1\{a^t = a^\dagger\}$$

• Small cumulative redesign cost

$$\sum_{t=1}^{T} C(\ell^0, \ell, a^t)$$
Assumption: $\ell_i^o (a^\dagger) \in [L + \rho, U - \rho]$ for some $\rho \in (0, \frac{U-L}{2})$

Redesign strategy:

$$\forall i, a, \ell_i(a) = \begin{cases}
\ell_i^o (a^\dagger) - \left(1 - \frac{d(a)}{M}\right) \rho & \text{if } a_i = a_i^\dagger, \\
\ell_i^o (a^\dagger) + \frac{d(a)}{M} \rho & \text{if } a_i \neq a_i^\dagger
\end{cases}$$

where $d(a) = \sum_{j=1}^M 1\{a_j = a_j^\dagger\}$
Key Ideas Behind Our Redesign

\[
\forall i, a, \ell_i(a) = \begin{cases}
\ell^o_i(a^\dagger) - \left(1 - \frac{d(a)}{M}\right) \rho & \text{if } a_i = a^\dagger_i, \\
\ell^o_i(a^\dagger) + \frac{d(a)}{M} \rho & \text{if } a_i \neq a^\dagger_i
\end{cases}
\]

(1). For player \(i\), \(\ell(a^\dagger_i, a_{-i}) = \ell(a_i, a_{-i}) - \left(1 - \frac{1}{M}\right) \rho\) (induced regret)

(2). \(\ell^o(a^\dagger) = \ell(a^\dagger)\) (no design cost when target is selected)

The designer can force all players to follow a target action profile in almost every but \(O(T^\alpha)\) (\(\alpha < 1\)) rounds while incurring \(O(T^\alpha)\) redesign cost.
Boundary Design

Assumption: \(\exists i, \ell^o_i \left(a^\dagger \right) \in \{L, U\} \)

The designer can force all players to follow a target action profile in almost every but \(O \left(T^{\frac{1+\alpha}{2}} \right) (\alpha < 1) \) rounds while incurring \(O \left(T^{\frac{1+\alpha}{2}} \right) \) redesign cost.
The Tragedy of Commons

• 2 farmers, each can farm 0 to 15 sheep

• The price of a sheep is $\sqrt{30 - (a_1 + a_2)}$

• Payoff of farmer 1 is $a_1 \times \sqrt{30 - (a_1 + a_2)}$ (similar for farmer 2)

 $Nash\ Equilibrium: \ a^* = (12, 12)$

• Social welfare: $(a_1 + a_2) \times \sqrt{30 - (a_1 + a_2)}$ maximized at $a_1 + a_2 = 20$

• Social equality: $a_1 = a_2 = 10$

• Designer goal: $a^\dagger = (10, 10)$

• Redesign forces a^\dagger in 98% of rounds when $T = 10^7$.

• The average design cost in each round is 0.5 (loss range is $[-15\sqrt{15}, 0]$)
Thanks!

Contact: ma234@wisc.edu