Statistics lets us make inferences about a population by studying a sample chosen from it.

1.1 Sampling		
e.g. We'll grill brats for a school picnic and war	nt to know how many of 42,000 students will at	tend
\bullet If we don't know statistics, \cdots		
• If we know statistics, · · ·		
Estimate that population proportion is _	, so about will at	tend
Our estimate is unlikely to be correct. Q	uestions include, e.g.:	
- Given a sample proportion of 40%, dence that it contains the population e.g. $(.40 \pm .00001)$? e.g. $(.40 \pm .6)$?	what surrounding interval would give us 95% on proportion?	confi
- We're certain that 4	2,000 brats will be enough.	
We're certain that 1		
Can we be 95% certain that 17000 b	orats will be enough?	
Simple Random Samples		
\bullet A $population$ is the set of individuals (obj	ects or outcomes) about which we seek informa	ation
• A sample is a of the popul	ation containing the individuals we actually obs	serve
• A simple random sample (SRS) of size n is is	s a sample chosen so that each subset of n indivi-	dual
To draw a simple random sample of size	n from a population of size N ,	
- number individuals in population wi	ith 1 through N	
- generate n random integers in	, and use the corresponding individu	ıals

• Sampling variation is the variation that occurs between from the same population.
How to Sample Badly
• A sample of convenience consists of individuals in the population that are
e.g.
$ullet$ A sampling design is biased if \cdots
• A sampling design is <i>musea</i> if · · ·
• A voluntary response sample consists of people who by re-
sponding to a broad appeal. It's biased because people with strong opinions are most likely to respond.
e.g.
Determining Whather a Sample Is a Simple Dandom Sample
Determining Whether a Sample Is a Simple Random Sample
Independence
Items in a sample are <i>independent</i> if knowing values of some doesn't help predict values of others.
e.g. Put ten balls labeled 0 through 9 in a bucket \cdots
P(draw 3) =
Suppose we draw a 3; then $P(draw 3) =$
To sample with replacement, replace an item after selecting it.

e.g. Then $P(draw 3) = \underline{\hspace{1cm}}$, even after drawing 3.
e.g. For a large population, this effect is negligible: with 10000 each of the ten balls in a bucket drawing a 3 changes P(draw 3) from to We treat items in a sample with $n < (5\%)N$ as independent (even when sampling without replacement).
Other Sampling Methods
In weighted sampling, some items are given more weight than others.
e.g. Put ten balls labeled 0 through 9 in bucket, then add ten 3s.
P(3) =
$P(i) = \underline{\hspace{1cm}}$ for each $i \neq 3$.
In $stratified\ random\ sampling$, the population is divided into subpopulations called "strata" (layers) and a SRS is taken from each stratum.
e.g. To get a sample of 200 from 42000 students and 2000 teachers at UW-Madison, \cdots
In <i>cluster sampling</i> , individuals are grouped into clusters, a sample of clusters is chosen, and individuals in those clusters are studied.
Types of Data
• With quantitative or numerical data, each item is assigned \cdots e.g.
• With categorical or qualitative data, each item is assigned · · ·
e.g.
Controlled Experiments and Observational Studies
• A controlled experiment individuals in order to observe their responses. Its purpose is to study whether treatment causes a change in the response. It can lead to a claim of
• An observational study and measures variable of interest, but doesn't attempt to influence responses. Its purpose is to describe some group