1.2 Summary Statistics

Sample Mean

The sample mean of a sample X_1, \dots, X_n is $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, a measure of the center of the data.

e.g. For the sample 9, 10, 11, $\bar{X} =$

e.g. For the sample 1, 10, 19, $\bar{X} =$

Standard Deviation

The deviation of the i^{th} observation from the mean is (observation) - (sample mean) = $X_i - \bar{X}$. Adding deviations over entire sample gives \cdots

The sample variance of n observations is their average squared deviation:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right) \text{ (easier to compute by hand)}$$

(Note: Divide not by _____, but by _____, the degrees of freedom in the sum. If we knew the population mean, μ , we'd sum squared deviations from μ and divide by n. But, with \bar{X} calculated from the sample, the deviations sum to 0, so any n-1 of them determine the last one. This technicality ______ for large n.)

(Note: We could call $\sum_{i=1}^{n} (X_i - \bar{X})^2$ a ______, and we could then refer to s^2 as a _____.)

Variance is measured in ______.

The sample standard deviation of n observations is

$$s = \sqrt{sample \ variance}$$

$$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

$$= \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n\bar{X}^2\right)}$$

Standard deviation has the same units as the data.	
e.g. Find sample standard deviation for 9, 10, 11:	
e.g. Find sample standard deviation for 1, 10, 19:	
Mean, variance, and standard deviation of a sample transfer	ormed by multiplication by
a constant and/or addition of a constant:	
If $Y_i = a + bX_i$, where a and b are constants, then $\bar{Y} =$	e.g. $Y_i = 32 + \frac{9}{5}X_i$
$s_Y^2 =$	
$s_Y =$	
Outliers	
An <i>outlier</i> is a data point that is much larger or smaller than the or delete them only if certain that they're due to)	thers. Check outliers. (Correct

Sample Median

The $sample\ median,\ M,$ is the midpoint of a sorted sample. To find it,

- sort sample
- $\begin{cases} n \text{ odd} \implies M \text{ is center data point at position } \frac{n+1}{2} \\ n \text{ even} \implies M \text{ is the average of the two central points at positions } \frac{n}{2} \text{ and } \frac{n}{2} + 1 \end{cases}$

e.g. Find median of 3, 1, 4, 2, 0

e.g. Find median of 3, 1, 4, 2, 0, 5

e.g. The median resists outliers better than the mean:

Quartiles

The first quartile, Q_1 , of a sample is the data point at (sorted) position $\frac{1}{4}(n+1)$, or the average of points on either side if this isn't an integer.

The third quartile, Q_3 , is the point at $\frac{3}{4}(n+1)$, or the average of points on either side if this isn't an integer.

(The second quartile is _____).

Percentiles

The *pth percentile* is the point at position $\frac{p}{100}(n+1)$, or the average of points on either side if this isn't an integer. About ______ of the sorted sample data are less than the *pth* percentile. e.g. 75th percentile is ______.

Computing

Check the "Computing" section of the syllabus:

- Help with calculators is under the "instructions" link, which leads to a "mean_standardDeviation" folder for Chapter 1 and to a "correlation_regression" folder for Chapter 2.
- Help with R and RStudio software is under the "R Guide" link. So far, it describes the example code for chapter 1 in "1.R".