1.3 Graphical Summaries

	e.g.	Here are average	commute times	(in minutes)	for the	50 states	and DC:
--	------	------------------	---------------	--------------	---------	-----------	---------

State	Time	State	Time	State	Time	State	Time
AL	22.7	IN	21.2	NE	16.5	SC	23.0
AK	18.9	IA	18.1	NV	21.8	SD	15.2
AZ	23.4	KS	17.5	NH	24.6	TN	23.4
AR	19.9	KY	22.1	NJ	28.5	TX	23.7
CA	26.5	LA	23.3	NM	19.4	UT	19.7
CO	22.9	ME	22.6	NY	30.4	VT	20.3
CT	23.6	MD	30.2	NC	23.2	VA	25.8
DE	22.5	MA	26.0	ND	15.4	WA	24.8
FL	24.8	MI	22.7	ОН	22.1	WV	24.7
GA	26.1	MN	21.7	OK	19.1	WI	20.4
$_{ m HI}$	24.5	MS	21.6	OR	21.0	WY	17.5
ID	19.5	MO	23.3	PA	23.8	DC	28.4
IL	27.0	MT	16.9	RI	21.8		

Here are the same data, sorted:

 $15.2\ 15.4\ 16.5\ 16.9\ 17.5\ 17.5\ 18.1\ 18.9\ 19.1\ 19.4$

 $19.5\ 19.7\ 19.9\ 20.3\ 20.4\ 21.0\ 21.2\ 21.6\ 21.7\ 21.8$

 $21.8\ 22.1\ 22.1\ 22.5\ 22.6\ 22.7\ 22.7\ 22.9\ 23.0\ 23.2$

 $23.3\ 23.3\ 23.4\ 23.4\ 23.6\ 23.7\ 23.8\ 24.5\ 24.6\ 24.7$

 $24.8\ 24.8\ 25.8\ 26.0\ 26.1\ 26.5\ 27.0\ 28.4\ 28.5\ 30.2$

30.4

Stem-and-Leaf Plot

To make a stem-and-leaf plot:

1.	separat	e each	observa	ation	into
----	---------	--------	---------	-------	------

• *stem*: _____ (or two)

• *leaf*:

- 2. write stems in a sorted column left of a vertical line
- 3. for each stem, write its leaves in increasing order to the right

e.g. Make a stem plot of commute times.

Dot	olot
-----	------

To make a dotplot:
1. draw a number line
2. draw a dot for each datum above its value on the number line
e.g. Make a dotplot of these data: 4 5 3 4 4 2 5 8 3 4.
Histogram
To make a histogram:
1. make a frequency table:
• find min and max
\bullet choose \approx 5-15 equal-length $class\ intervals$ covering [min, max]
• count #points in each interval (include, exclude
\bullet (optional) calculate $relative\ frequency = (class\ frequency)\ /\ (total\ \#observations)$

2. above each interval, draw a rectangle whose height indicates its count (or relative frequency)

g. Make a histogram of commute times.	
Properties of Histograms	
Properties of Histograms histogram is	
	its left half
histogram is	
histogram issymmetric if its right half is of	than its left half
 histogram is symmetric if its right half is of skewed right if its right half of values extend 	than its left half
 histogram is symmetric if its right half is of skewed right if its right half of values extend skewed left if its left half of values extend 	than its left half than its right half
 histogram is symmetric if its right half is of skewed right if its right half of values extend skewed left if its left half of values extend unimodal if it has only 	than its left half than its right half

Boxplot

То	make	a.	boxn	lot
10	manc	α	00μ	uou.

-1	1			1
1. (draw	a.	vertical	Escale

2. draw horizontal lines at _____, ____, and _____

3. draw vertical lines to complete a box

4. find the *interquartile range*, IQR =_______, a measure of spread spanning center ______ of data

5. call points outside $[Q_1 - 1.5 \times IQR, Q_3 + 1.5 \times IQR]$ and plot each one

6. draw lines from box to largest non-outlier and from box to smallest non-outlier

Boxplots are useful for side-by-side comparison of mutliple samples.

e.g. Make a boxplot of commute times, given $Q_1 = 19.9, M = 22.7, \text{ and } Q_3 = 24.6.$