2 Summarizing Bivariate Data

- 2.1 The Correlation Coefficient
- 2.2 The Least-Squares Line
- 2.3 Features and Limitations of the Least-Squares Line

2.1 The Correlation Coefficient

Introduction

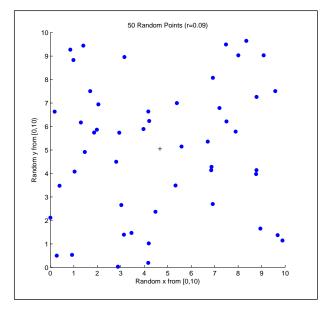
A bivariate data set consists of n ______, $(x_1, y_1), \cdots, (x_n, y_n)$.

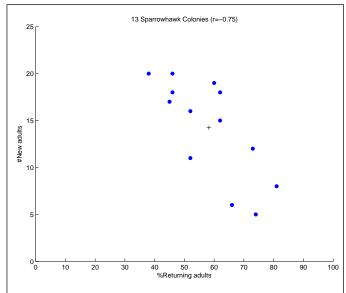
A scatterplot is a ______ of a bivariate data set.

e.g. Here are data for 13 sparrowhawk colonies relating the % of adult sparrowhawks in a colony that return from the previous year and the number of new adults that join the colony:

%Returning adults 74 #New adults

The right-hand scatterplot, below, is from these data. It shows \cdots





The Correlation Coefficient

The correlation coefficient, r, measures the _____ and ___ of the linear relationship (if any) between x and y:

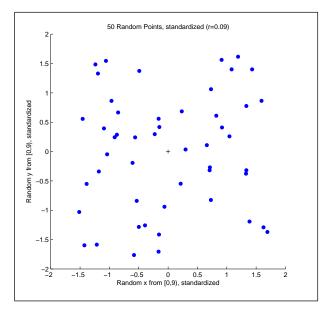
$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right) \text{ (a form I prefer)}$$

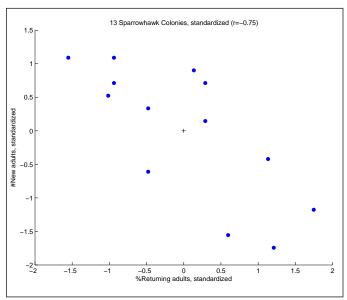
An Informal Explanation of r

- Start with a scatterplot
- Shift origin to _____ by subtracting \bar{x} from each x_i and \bar{y} from each y_i
- Rescale the x-axis by dividing each x coordinate by s_x , and rescale the y-axis by dividing each y coordinate by s_y

Now x coordinates, $\frac{x_i - \bar{x}}{s_x}$, have mean _____ and standard deviation _____. y coordinates, $\frac{y_i - \bar{y}}{s_y}$, have the same mean and standard deviation.

• Analyze the sign of the i^{th} term in the last sum above, $\left(\frac{x_i - \bar{x}}{s_x}\right) \left(\frac{y_i - \bar{y}}{s_y}\right)$, by quadrant:





e.g. For the sparrowhawk data, r =_____. For the random data, r =____.

Properties of r

_	1				1	a al
•	-1	<	r	<	Ι,	and

$$r=\pm 1 \implies {\rm data \; are \; \underline{\qquad}}; \, r \approx \pm 1 \implies {\rm data \; are \; \underline{\qquad}}$$

 $r \not\approx 0 \implies$ some linear relationship: x and y are correlated

 $r > 0 \implies$ slope of line is _____

 $r < 0 \implies$ slope of line is _____

 $r \approx 0 \implies$ no linear relationship: x and y are _____

• r doesn't distinguish between _____ and ____

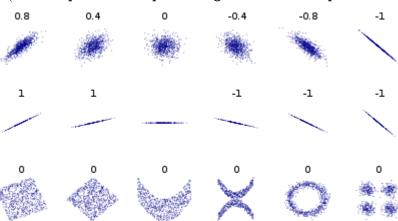
ullet r doesn't depend on _____ or ____

Cautions

 $\bullet \ r$ measures strength of a linear relationship; check scatterplot to avoid using r for a ______

e.g. The data $\{ (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4) \}$ fit ______, but r = 0 because the data have no relationship (draw).

e.g. (from http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient)



- r is not resistant to the influence of ______: don't use it for a data set with ______.

 e.g. Adding (0,0) to the sparrowhawk data changes r to _____.
- Correlation does not imply causation:

A $_$ (or lurking) variable is one $_$ under consideration that correlates with both the independent and dependent variables of interest.

e.g.

Increasing ice cream sales are correlated with increasing ______ rates. Does ice cream cause _____? ____
 The confounding variable is _____.

A student wishing to understand the cause of _____ drank, on successive nights, nothing but ...

If either the independent variable under study, or a correlated confounding variable, affects the dependent variable, then both will seem to by the (______) criterion of correlation.

The Least-Squares Regression Line

The *least-squares regression line* is the line that ______ the data (according to a reasonable criterion). We'll study its basics in §2.2-2.3, and we'll use it for inference in Chapter 8.