3 Probability

- 3.1 Basic Ideas
- 3.2 Conditional Probability and Independence
- 3.3 Random Variables
- 3.4 Functions of Random Variables

3.1 Basic Ideas

A sample space, S , is the set of	_ of a random process.
An $event$, A , is a of S .	
e.g. Consider tossing two fair coins.	
• The sample space is $S = $	(draw tree)
• Events include	
-A = both heads =	
-B = at least one head $=$	
- C = three heads $=$	

Combining Events

Set notation is convenient for describing compound events:

- $A \cup B =$ " $A \subseteq B$ " = union of A and $B = \{$ outcomes in $\subseteq B$ "
- $A \cap B =$ " $A \subseteq B$ " = intersection of A and $B = \{$ outcomes in \subseteq $\}$
- $A^c =$ "_____ A" = complement of $A = \{$ outcomes that _____ to $A \}$

e.g. For tossing two coins,

- \bullet $A \cup B =$
- *A*∩*B* = _____
- $A^c =$ ______
- $\bullet \ A \cup A^c = \underline{\hspace{1cm}}$
- \bullet $A \cap A^c =$
- \bullet $A^c \cup B =$
- $\bullet \ A^c \cap B = \underline{\hspace{1cm}}$

Mutually Exclusive Events

Events A and B are mutually exclusive if they have Events A_1, \dots, A_n are mutually exclusive if				has no outcomes i	has no outcomes in common. $(A \cap B = \emptyset)$.		
e.g. For tossing two coins,							
Axioms of l	Probability						
The <i>probabilit</i> , would occur	y of an outcome of a ra	ndom process	s is the	of times	the outcome		
e.g. Here are i	results of computer sim	ulation of n r	andom coin	tosses:			
n	Data	#Heads	#Tails	$P(\text{Heads}) \approx \frac{\# \text{Heads}}{n}$			
1	T	0	1				
10	TTTHHTTHTH	4	6				
100	$HTTHTTTTHT \cdots$	53	47				
1000	$HTTHTTTTTTT \cdots$	491	509				
1000000000	THHTTHHHHHT · · ·	500002628	499997372				
which is $P(\text{He})$	ads). A , the proportion A is denoted as A is denoted as A .		is approachin	ng the long-run proport	ion		
	bability include	()					
$\bullet \ P(S) =$							
• For any	event A ,						
	ually exclusive events $A \cdot \cdots$, $P(A_1 \cup A_2 \cup \cdots) =$; for mutua	ally exclusive		
Consequences	include						

• For any event $A, P(A^c) = \underline{\hspace{1cm}}$

 $\bullet \ P(\emptyset) = \underline{\hspace{1cm}}$

e.g. Here is the distribution of Canadian responses to the question, "What is your mother tongue?"

Language	English	French	Asian/Pacific	Other
Probability	0.59	0.23	0.07	x

- \bullet x =
- P(mother tongue isn't English) =
- P(mother tongue is English or French) =

e.g. For tossing two coins, each of the four outcomes is equally likely, so

- P(HH) = P(HT) = P(TH) = P(TT) =_____
- P(A) =_____
- P(B) =_____
- $P(B^c) =$ ______
- P(C) =_____

Sample Spaces with Equally Likely Outcomes

If S is a sample space with N equally-likely outcomes, then the probability of each outcome is ______. If A is an event containing k outcomes, then P(A) =______. e.g. Consider drawing a card randomly from a 52-card deck. P(Ace of spades) =______, P(Ace) =______, and P(spade) =______.

The Addition Rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (draw overlapping circles)

e.g. P(Ace or spade) =

Note that the axiom "for mutually exclusive A and B, $P(A \cup B) = P(A) + P(B)$ " is the special case where ______.

Examples

e.g. (p. 73 #3) Of a certain manufacturer's silicon wafers, 10% have resistances below specification and 5% have resistances above specification.

- What is the probability that the resistance of a randomly chosen wafer does not meet the specification?
- If a randomly chosen wafer has a resistance that does not meet the specification, what is the probability that it's too low? (Hint: draw a picture.)

e.g. (#6) Human blood may contain either or both of two antigens, A and B. Type A blood contains only antigen A, type B blood contains only antigen B, type AB blood contains both antigens, and type O blood contains neither. At a certain blood bank, 35% of donors have type A blood, 10% have type B, and 5% have type AB.

- What is the probability that a randomly chosen donor is type O?
- A type A recipient may receive blood from a donor whose blood doesn't contain the B antigen. What is the probability that a randomly chosen donor may donate to a type A recipient?

e.g. (#7) 60% of purchases at a computer store are desktops, 30% are laptops, and 10% are printers. An audit samples one purchase record at random.

- What is the probability that it's a desktop?
- What is the probability that is a desktop or laptop?